CS 245 W15 Lecture 6 A. Lubiw, U. Waterloo CS 245 / Winter 2015 Propositional Logic CS 245 W15 Lecture 6 A. Lubiw, U. Waterloo Summary of Inference Rules for Natural Deduction Recall Introduction - natural deduction — proof system for propositional logic designed to Elimination be more like real math proofs ↵^ ↵ ↵ - notation α ⊢ β means from α we can prove β ^ ↵^ 2 CS 245 / Winter 2015 Propositional Logic Summary of Inference Rules for Natural Deduction _ Introduction ^ ↵^ ↵ 2 CS 245 / Winter 2015 2 Propositional Logic _ ↵_ 6 .. . Summary of Inference Rules for Natural 4Deduction ↵ ↵_ Lecture 6 A. Lubiw, U. Waterloo ↵_ !^ ¬ _ ? ! 2 ↵ 6↵ .. 4 . ↵^ ↵! 2 ↵ 6 .. 4 . ↵ ↵_ ? ¬↵ ↵ ¬↵ ? 2 ↵ 6 .. 4 . ↵! 2 ↵ ↵_ ↵ 6 .. 4 . ¬¬↵ 2 ↵ 6 .. 4 . ↵_ ? ↵ modus ponens ↵! ↵ 2 ↵ 6 .. 4 . modus ponens ↵! ↵ ↵! CS 245 W15 ¬ Elimination ponens ↵modus ^ ↵^ ↵ ↵! ↵ 2 6 .. 4 . ↵_ ! ↵ 6 .. 4 . Introduction 2 ↵_ ↵^ ↵^ CS 245 W15 ↵ ↵_ ↵ 6 .. 4 . Elimination ↵ ↵^ ? 2 ↵ 6 .. 4 . ? ¬↵ ↵ ¬↵ ? Lecture 5 ¬¬↵ A. Lubiw, U. Waterloo ↵ ? ↵ CS 245 / Winter 2015 Propositional Logic Summary of Inference Rules for Natural Deduction CS 245 W15 Lecture 5 A. Lubiw, U. Waterloo CS 245 W15 Introduction ↵^ ↵ ↵ ^ Elimination Lecture 5 A. Lubiw, U. Waterloo ↵^ ↵^ 2 _ ↵ ↵_ ↵ 6 .. 4 . 2 ↵_ 6 .. 4 . ↵_ ! 2 ↵ 6 .. 4 . modus ponens ↵! ↵ ↵! ¬ ? CS 245 W15 Lecture 5 Some very useful “derived” rules: modus tollens: α → β, ¬β ⊢ ¬α A. Lubiw, U. Waterloo CS 245 W15 2 ↵ 6 .. 4 . ? ¬↵ ¬¬↵ ↵ ↵ ¬↵ ? ? ↵ Lecture 5 A. Lubiw, U. Waterloo Notes about rules of natural deduction - this set is consistent with Huth and Ryan (section 1.2) - different books present slightly different rules law of excluded middle: ⊢ α ⋁ ¬α - the set of rules is not minimal (some can be derived from others) - ⊥ is not truly necessary (can replace by p ⋀ ¬p ) - these are rules of “classical” logic. “Intuitionist logic” (which has applications in CS for type theory) eschews the law of excluded middle (and also ¬¬α ⊢ α ). See [H&R 1.2.5]. CS 245 W15 Proof of modus tollens: CS 245 W15 examples Lecture 5 A. Lubiw, U. Waterloo Lecture 5 Proof of law of excluded middle: α → β, ¬β ⊢ ¬α Lecture 5 CS 245 W15 A. Lubiw, U. Waterloo CS 245 W15 A. Lubiw, U. Waterloo ⊢ α ⋁ ¬α Lecture 6 A. Lubiw, U. Waterloo CS 245 W15 Lecture 6 A. Lubiw, U. Waterloo CS 245 W15 Lecture 6 A. Lubiw, U. Waterloo CS 245 W15 Lecture 6 A. Lubiw, U. Waterloo CS 245 W15 Lecture 5 A. Lubiw, U. Waterloo CS 245 W15 Lecture 6 A. Lubiw, U. Waterloo CS 245 W15 Lecture 5 Proof of law of excluded middle: CS 245 W15 Lecture 6 A. Lubiw, U. Waterloo CS 245 W15 A. Lubiw, U. Waterloo ⊢ α ⋁ ¬α Lecture 6 A. Lubiw, U. Waterloo CS 245 W15 Lecture 6 A. Lubiw, U. Waterloo Suggestions for Natural Deduction proofs - try to work forward from the premises — can you apply an elimination rule? - try to work backwards from the conclusion — what introduction rule do you need to use at the end? - think about why the formula is true, and use that to guide your proof - if a direct proof does not work, try a proof by contradiction CS 245 W15 Lecture 6 What I expect you to know/do: - do natural deduction proofs - know what soundness and completeness mean A. Lubiw, U. Waterloo
© Copyright 2026 Paperzz