Summary of Inference Rules for Natural Deduction

CS 245 W15
Lecture 6
A. Lubiw, U. Waterloo
CS 245 / Winter 2015
Propositional Logic
CS 245 W15
Lecture 6
A. Lubiw, U. Waterloo
Summary of Inference Rules for Natural Deduction
Recall
Introduction
- natural deduction — proof system for propositional logic designed to
Elimination
be more like real math proofs
↵^
↵
↵
- notation α ⊢ β means from α we can prove β
^
↵^
2
CS 245 / Winter 2015
Propositional Logic
Summary of Inference Rules for Natural Deduction
_
Introduction
^
↵^
↵
2
CS 245 / Winter 2015
2
Propositional
Logic
_
↵_
6 ..
.
Summary of Inference Rules for Natural 4Deduction
↵
↵_
Lecture 6
A. Lubiw, U. Waterloo
↵_
!^
¬
_
?
!
2
↵
6↵ ..
4 .
↵^
↵!
2
↵
6 ..
4
.
↵
↵_ ?
¬↵
↵
¬↵
?
2
↵
6 ..
4 .
↵!
2
↵
↵_
↵
6 ..
4 .
¬¬↵
2
↵
6 ..
4 .
↵_
?
↵
modus ponens
↵!
↵
2
↵
6 ..
4 .
modus ponens
↵!
↵
↵!
CS 245 W15
¬
Elimination
ponens
↵modus
^
↵^
↵ ↵!
↵
2
6 ..
4 .
↵_
!
↵
6 ..
4 .
Introduction
2
↵_
↵^
↵^
CS 245 W15
↵
↵_
↵
6 ..
4 .
Elimination
↵
↵^
?
2
↵
6 ..
4 .
?
¬↵
↵
¬↵
?
Lecture 5
¬¬↵
A. Lubiw, U. Waterloo
↵
?
↵
CS 245 / Winter 2015
Propositional Logic
Summary of Inference Rules for Natural Deduction
CS 245 W15
Lecture 5
A. Lubiw, U. Waterloo
CS 245 W15
Introduction
↵^
↵
↵
^
Elimination
Lecture 5
A. Lubiw, U. Waterloo
↵^
↵^
2
_
↵
↵_
↵
6 ..
4 .
2
↵_
6 ..
4 .
↵_
!
2
↵
6 ..
4 .
modus ponens
↵!
↵
↵!
¬
?
CS 245 W15
Lecture 5
Some very useful “derived” rules:
modus tollens: α → β, ¬β ⊢ ¬α
A. Lubiw, U. Waterloo
CS 245 W15
2
↵
6 ..
4 .
?
¬↵
¬¬↵
↵
↵
¬↵
?
?
↵
Lecture 5
A. Lubiw, U. Waterloo
Notes about rules of natural deduction
- this set is consistent with Huth and Ryan (section 1.2)
- different books present slightly different rules
law of excluded middle:
⊢ α ⋁ ¬α
- the set of rules is not minimal (some can be derived from others)
- ⊥ is not truly necessary (can replace by p ⋀ ¬p )
- these are rules of “classical” logic.
“Intuitionist logic” (which has applications in CS for type theory) eschews
the law of excluded middle (and also
¬¬α ⊢ α ). See [H&R 1.2.5].
CS 245 W15
Proof of modus tollens:
CS 245 W15
examples
Lecture 5
A. Lubiw, U. Waterloo
Lecture 5
Proof of law of excluded middle:
α → β, ¬β ⊢ ¬α
Lecture 5
CS 245 W15
A. Lubiw, U. Waterloo
CS 245 W15
A. Lubiw, U. Waterloo
⊢ α ⋁ ¬α
Lecture 6
A. Lubiw, U. Waterloo
CS 245 W15
Lecture 6
A. Lubiw, U. Waterloo
CS 245 W15
Lecture 6
A. Lubiw, U. Waterloo
CS 245 W15
Lecture 6
A. Lubiw, U. Waterloo
CS 245 W15
Lecture 5
A. Lubiw, U. Waterloo
CS 245 W15
Lecture 6
A. Lubiw, U. Waterloo
CS 245 W15
Lecture 5
Proof of law of excluded middle:
CS 245 W15
Lecture 6
A. Lubiw, U. Waterloo
CS 245 W15
A. Lubiw, U. Waterloo
⊢ α ⋁ ¬α
Lecture 6
A. Lubiw, U. Waterloo
CS 245 W15
Lecture 6
A. Lubiw, U. Waterloo
Suggestions for Natural Deduction proofs
- try to work forward from the premises — can you apply an
elimination rule?
- try to work backwards from the conclusion — what introduction
rule do you need to use at the end?
- think about why the formula is true, and use that to guide your proof
- if a direct proof does not work, try a proof by contradiction
CS 245 W15
Lecture 6
What I expect you to know/do:
- do natural deduction proofs
- know what soundness and completeness mean
A. Lubiw, U. Waterloo