Name__________________________________________________ 1.) Given: ̅̅̅̅ ̅̅̅̅ ≅ 𝑇𝑆 𝑇𝑅 ̅̅̅̅ 𝑇𝑄 bisects ∡𝑅𝑇𝑆 Prove: Q is a midpoint of ̅̅̅̅ 𝑅𝑆 Statements Reasons ̅̅̅̅ ̅̅̅̅ ≅ 𝑇𝑆 1.) 𝑇𝑅 ̅̅̅̅ 𝑇𝑄 bisects ∡𝑅𝑇𝑆 1.) Given 2.) ∡𝑅𝑇𝑄 ≅ ∡𝑆𝑇𝑄 2.) Definition of bisector 3.) ∡𝑅 ≅ ∡𝑆 3.) If 2 sides of a ∆ are ≅, then the opposite angles are ≅. 4.) ∆𝑅𝑇𝑄 ≅ ∆𝑆𝑇𝑄 ̅̅̅̅ ≅ 𝑆𝑄 ̅̅̅̅ 5.) 𝑅𝑄 4.)𝐴𝑆𝐴 ≅ 𝐴𝑆𝐴 6.) Q is a midpoint of ̅̅̅̅ 𝑅𝑆 6.) A midpoint divides a segment 5.) CPCTC into 2 congruent segments. Statements ̅̅̅̅ ∥ 𝑄𝑅 ̅̅̅̅ 2.) Given: 𝑃𝑆 ̅̅̅̅ 𝑅𝑆 bisects ̅̅̅̅ 𝑃𝑄 Prove: ∆𝑃𝑆𝑇 ≅ ∆𝑄𝑅𝑇 1.) ̅̅̅̅ 𝑃𝑆 ∥ ̅̅̅̅ 𝑄𝑅 ̅̅̅̅ bisects 𝑃𝑄 ̅̅̅̅ 𝑅𝑆 Reasons 1.) Given 2.) ∡𝑃𝑆𝑇 ≅ ∡𝑄𝑅𝑇; ∡𝑆𝑃𝑇 ≅ ∡𝑅𝑄𝑇 2.) Alternate interior angles theorem ̅̅̅̅ ̅̅̅̅ ≅ 𝑄𝑇 3.) 𝑃𝑇 3.) Definition of bisector 4.) ∆𝑃𝑆𝑇 ≅ ∆𝑄𝑅𝑇 4.) 𝐴𝐴𝑆 ≅ 𝐴𝐴𝑆 3.) Given: ̅̅̅̅̅̅ 𝐷𝐸𝐹 , ̅̅̅̅̅̅ 𝐴𝐸𝐶 ̅̅̅̅ and 𝐷𝐹 ̅̅̅̅ bisect each other 𝐴𝐶 Prove: ∡𝐷𝐴𝐸 ≅ ∡𝐹𝐶𝐸 4.) Given: ∆𝑅𝐴𝑀 and ∆𝑃𝐵𝑀 M is the midpoint of ̅̅̅̅ 𝑅𝑃 and ̅̅̅̅ 𝐴𝐵 Prove: ̅̅̅̅ 𝑅𝐴 ∥ ̅̅̅̅ 𝑃𝐵 Statements Reasons 1.) ̅̅̅̅̅̅ 𝐷𝐸𝐹 , ̅̅̅̅̅̅ 𝐴𝐸𝐶 ̅̅̅̅ and 𝐷𝐹 ̅̅̅̅ bisect each other 𝐴𝐶 1.) Given ̅̅̅̅ ; ̅̅̅̅ ̅̅̅̅ 2.) ̅̅̅̅ 𝐴𝐸 ≅ 𝐶𝐸 𝐷𝐸 ≅ 𝐹𝐸 2.) Definition of bisector 3.) ∡𝐷𝐸𝐴 ≅ ∡𝐹𝐸𝐶 3.) Vertical angles theorem 4.) ∆𝐷𝐴𝐸 ≅ ∆𝐶𝐹𝐸 4.) 𝑆𝐴𝑆 ≅ 𝑆𝐴𝑆 5.) ∡𝐷𝐴𝐸 ≅ ∡𝐹𝐶𝐸 5.) CPCTC Statements Reasons 1.) ∆𝑅𝐴𝑀 and ∆𝑃𝐵𝑀 1.) Given ̅̅̅̅ ̅̅̅̅ M is the midpoint of 𝑅𝑃 and 𝐴𝐵 2.) ̅̅̅̅̅ 𝑅𝑀 ≅ ̅̅̅̅̅ 𝑃𝑀; ̅̅̅̅̅ 𝐴𝑀 ≅ ̅̅̅̅̅ 𝐵𝑀 2.) Definition of midpoint 3.) ∡𝑅𝑀𝐴 ≅ ∡𝑃𝑀𝐵 3.) Vertical angles theorem 4.) ∆𝑅𝑀𝐴 ≅ ∆𝑃𝑀𝐵 4.) 𝑆𝐴𝑆 ≅ 𝑆𝐴𝑆 5.) ∡𝑀𝑅𝐴 ≅ ∡𝑀𝑃𝐵 5.) CPCTC ̅̅̅̅ ∥ 𝑃𝐵 ̅̅̅̅ 6.) 𝑅𝐴 6.) Converse of the alternate interior angles theorem 5.) Given: Parallelogram PQRS ̅̅̅̅ 𝑃𝐸 ⊥ ̅̅̅̅ 𝑆𝑄; ̅̅̅̅ 𝑅𝐹 ⊥ ̅̅̅̅ 𝑆𝑄 Prove: ̅̅̅̅ 𝑆𝐸 ≅ ̅̅̅̅ 𝑄𝐹 6.) Given: Quadrilateral ABCD Diagonal ̅̅̅̅̅̅̅̅ 𝐴𝐹𝐸𝐶 ̅̅̅̅ ̅̅̅̅ 𝐴𝐸 ≅ 𝐹𝐶 ̅̅̅̅ , ̅̅̅̅ ̅̅̅̅ ̅̅̅̅ ⊥ 𝐴𝐶 𝐵𝐹 𝐷𝐸 ⊥ 𝐴𝐶 ∡1 ≅ ∡2 Prove: ABCD is a parallelogram. Statements Reasons 1.) Parallelogram PQRS 1.) Given ̅̅̅̅ ; 𝑅𝐹 ̅̅̅̅ ̅̅̅̅ ⊥ 𝑆𝑄 ̅̅̅̅ ⊥ 𝑆𝑄 2.) 𝑃𝐸 2.) Given 3.) ∡𝑃𝐸𝑆, ∡𝑅𝐹𝑄 are right ∡𝑠 3.) Definition of ⊥ lines 4.) ∡𝑃𝐸𝑆 ≅ ∡𝑅𝐹𝑄 ̅̅̅̅ 5.) ̅̅̅̅ 𝑃𝑆 ≅ 𝑅𝑄 4.) All right angles are ≅ ̅̅̅̅ ∥ 𝑅𝑄 ̅̅̅̅ 6.) 𝑃𝑆 6.) In a parallelogram, opposite sides are parallel. 7.) ∡𝑃𝑆𝑄 ≅ ∡𝑅𝑄𝑆 7.) Alternate interior angles theorem 8.) ∆𝑃𝐸𝑆 ≅ ∆𝑅𝐹𝑄 9.) ̅̅̅̅ 𝑆𝐸 ≅ ̅̅̅̅ 𝑄𝐹 8.) 𝐴𝐴𝑆 ≅ 𝐴𝐴𝑆 5.) In a parallelogram, opposite sides are ≅. 9.) CPCTC Statements Reasons 1.) Quadrilateral ABCD 1.) Given ̅̅̅̅̅̅̅̅ 2.) Diagonal 𝐴𝐹𝐸𝐶 3.) ̅̅̅̅ 𝐴𝐸 ≅ ̅̅̅̅ 𝐹𝐶 2.) Given 4.) ̅̅̅̅ 𝐹𝐸 ≅ ̅̅̅̅ 𝐹𝐸 4.) Reflexive Property 5.) ̅̅̅̅ 𝐴𝐸 − ̅̅̅̅ 𝐹𝐸 ≅ ̅̅̅̅ 𝐹𝐶 − ̅̅̅̅ 𝐹𝐸 3.) Given 5.) Subtraction Property or ̅̅̅̅ 𝐴𝐹 ≅ ̅̅̅̅ 𝐶𝐸 6.) ̅̅̅̅ 𝐵𝐹 ⊥ ̅̅̅̅ 𝐴𝐶 , ̅̅̅̅ 𝐷𝐸 ⊥ ̅̅̅̅ 𝐴𝐶 6.) Given 7.) ∡𝐵𝐹𝐴, ∡𝐷𝐸𝐶 are right angles 7.) Definition of ⊥ Lines 8.) ∡𝐵𝐹𝐴 ≅ ∡𝐷𝐸𝐶 8.) All right angles are ≅ 9.) ∡1 ≅ ∡2 9.) Given 10.) ∆𝐵𝐹𝐴 ≅ ∆𝐷𝐸𝐶 10.) 𝐴𝐴𝑆 ≅ 𝐴𝐴𝑆 ̅̅̅̅; ∡𝐵𝐴𝐶 ≅ ∡𝐷𝐶𝐴 11.) ̅̅̅̅ 𝐴𝐵 ≅ 𝐶𝐷 ̅̅̅̅ ̅̅̅̅ 12.) 𝐴𝐵 ∥ 𝐶𝐷 11.) CPCTC 12.) Converse of the Alternate Interior ∡𝑠 Theorem 13.) ABCD is a parallelogram 13.) If one pair of sides are both ≅ and parallel, then a quadrilateral is a parallelogram 7.) The diagram below shows rectangle ABCD with points E and F on side ̅̅̅̅ 𝐴𝐵 . Segments 𝐶𝐸 and 𝐷𝐹 intersect at G, and ∡𝐴𝐷𝐺 ≅ ∡𝐵𝐶𝐺. ̅̅̅̅ Prove: ̅̅̅̅ 𝐴𝐸 ≅ 𝐵𝐹 Statements Reasons 1.) rectangle ABCD with points E 1.) Given ̅̅̅̅ and F on side 𝐴𝐵 2.) Segments 𝐶𝐸 and 𝐷𝐹 intersect at G 2.) Given 3.) ∡𝐴𝐷𝐺 ≅ ∡𝐵𝐶𝐺 3.) Given 4.) ∡𝐴, ∡𝐵 are right angles 4.) A rectangle has right angles 5.) ∡𝐴 ≅ ∡𝐵 ̅̅̅̅ 6.) ̅̅̅̅ 𝐷𝐴 ≅ 𝐶𝐵 5.) All right angles are ≅ 7.) ∆𝐷𝐴𝐹 ≅ ∆𝐶𝐵𝐸 ̅̅̅̅ ≅ 𝐵𝐸 ̅̅̅̅ 8.) 𝐴𝐹 7.) 𝐴𝑆𝐴 ≅ 𝐴𝑆𝐴 9.) ̅̅̅̅ 𝐸𝐹 ≅ ̅̅̅̅ 𝐸𝐹 9.) Reflexive Property 10.) ̅̅̅̅ 𝐴𝐹 − ̅̅̅̅ 𝐸𝐹 ≅ ̅̅̅̅ 𝐵𝐸 − ̅̅̅̅ 𝐸𝐹 10.) Subtraction Property 6.) In a rectangle, opposite sides are ≅ 8.) CPCTC or ̅̅̅̅ 𝐴𝐸 ≅ ̅̅̅̅ 𝐵𝐹 8.) In the accompanying diagram of circle O, diameter ̅̅̅̅̅̅ 𝐴𝑂𝐵 is drawn, ̅̅̅̅ is drawn to the circle at B, tangent 𝐶𝐵 E is a point on the circle, and ̅̅̅̅ 𝐵𝐸 ∥ ̅̅̅̅̅̅ 𝐴𝐷𝐶 . Statements Reasons ̅̅̅̅̅̅ is drawn, 1.) diameter 𝐴𝑂𝐵 ̅̅̅̅ tangent 𝐶𝐵 is drawn to the circle at B, E is a point on the circle, and ̅̅̅̅ 𝐵𝐸 ∥ ̅̅̅̅̅̅ 𝐴𝐷𝐶 . 1.) Given Prove: ∆𝐴𝐵𝐸~∆𝐶𝐴𝐵 2.) ∡𝐷𝐴𝐵 ≅ ∡𝐸𝐵𝐴 2.) Alt Interior ∡𝑠 Theorem 3.) ∡𝐶𝐵𝐴 is a right angle 3.) Tangent is ⊥ to a radius 4.) ∡𝐴𝐸𝐵 is a right angle 4.) An angle inscribed in a semicircle is a right angle. 5.) ∡𝐶𝐵𝐴 ≅ ∡𝐴𝐸𝐵 5.) All right angles are ≅ 6.) ∆𝐴𝐸𝐵~∆𝐶𝐴𝐵 6.) 𝐴𝐴~𝐴𝐴
© Copyright 2026 Paperzz