Mu Sequences and Series National Convention 2012 For all

Mu Sequences and Series
National Convention 2012
For all questions, answer E. "NOTA" means none of the above answers is correct.
Note that for the following problems, i is defined such that i 2 = -1.
æ 1 öæ
1 öæ
1 ö æ
1 ö
1. Simplify the product ç1+ ÷ç1+ 2 ÷ç1+ 4 ÷ ç1+ 22012 ÷ .
è a øè a øè a ø è a ø
1-1 a 2
1-1 a
E) NOTA
2012
1-1 a 2
1-1 a
2013
A)
B)
1-1 a 2
1-1 a
2014
C)
1-1 a 2
1-1 a
2015
D)
2. A geometric series has terms A20 = e5 and A40 = e45 . Find A30 .
A) e10
B) e15
C) e 20
D) e 25
E) NOTA
-k
æ
F ö
3. Let Fn denote the n Fibonacci number. Evaluate the following sum: åç lim n+1 ÷
k=0 è n®¥ Fn ø
¥
th
A)
1+ 5
2
B)
2+ 5
2
C)
3+ 5
2
D)
4+ 5
2
E) NOTA
For questions 4-8 determine the convergence (divergence) of the given series.
n
¥
n+1 2 æ 4 ö
4. å(-1) n ç ÷
è 5ø
n=1
A) Converges Absolutely
B) Converges Conditionally
C) Diverges
D) Inconclusive
E) NOTA
¥
np
5. å(-1)
given 0 < p <1
n!
n=1
A) Converges Absolutely
B) Converges Conditionally
D) Inconclusive
E) NOTA
n
C) Diverges
¥
2n -1
) ( n + 3)
n=1 (
A) Converges Absolutely
D) Inconclusive
6.
ån n+2
¥
ln n
3n + 2
n=1
A) Converges Absolutely
D) Inconclusive
7.
å(-1)
¥
8.
B) Converges Conditionally
E) NOTA
C) Diverges
B) Converges Conditionally
E) NOTA
C) Diverges
B) Converges Conditionally
C) Diverges
n-1
å n ln n
n=2
1
A) Converges Absolutely
Mu Sequences and Series
D) Inconclusive
National Convention 2012
E) NOTA
2012
9. Let Pn =1+ 2 +
A)
1007
3
B)
åP
n
+ n . Evaluate
1009
3
C)
.
n=1
( 2012) ( 2013)
1012
3
D)
1015
3
E) NOTA
10. Given a differentiable function f ( x ) = e x , determine the values of x such that the series
dy æ d 2 y ö æ d 3 y ö
1+ + ç 2 ÷ + ç 3 ÷ +
dx è dx ø è dx ø
converges.
A) (-¥,¥)
C) ( 0,¥)
2
3
B) (-¥, 0)
D) (-e, e)
E) NOTA
æ k æ 2 ö 3ö
11. Define ak = k ç åç 2 ÷ - ÷ for all k ³ 3. Find lim an .
n®¥
è n=2 è n -1 ø 2 ø
A) -4
B) -3
C) -2
D) -1
E) NOTA
æ1 1
1
1
12. Evaluate cos ç +
+
+
+
è p 4p 9p 16p
3
1
1
A) B) C)
2
2
2
ö
÷.
ø
3
2
D)
E) NOTA
n
13. Determine the value of the following limit: lim å
A)
p
2
B)
p
3
C)
1
.
2
n®¥
k
k=0 n +
n
p
D)
4
1 1 1
14. Evaluate 1- + - +
2 4 8
1
1
2
A)
B)
C)
3
2
3
D)
p
5
3
2
E) NOTA
E) NOTA
n2 ( x - 8)
15. Determine the interval of convergence of å
.
n2 - 6
n=0
¥
A) ( 5, 7)
B) ( 7, 9)
C) ( 9,11)
16. Evaluate the sum 2 + ip -
D) (11,13)
p 2 ip 3 p 4
2!
-
3!
+
4!
+...
5n
E) NOTA
Mu Sequences and Series
A) 1
B) 3
C) 5
National Convention 2012
E) NOTA
D) 7
17. Find the sum of the coefficients of the terms up to degree 4 in the MacLaurin series of
cos x
.
1- x
A)
83
24
B)
85
24
C)
29
8
D)
18. Determine a Taylor Series about
n+1
-1) 2 2n-1 x 2n
(
A) å
+C
( 2n )!
n=1
n
¥
(-1) x 2n+1 + C
D) å
n=0 ( 2n + 2 )!
¥
89
24
E) NOTA
x = 0 for the following integral
n +1
-1) 2 2 x n
(
B) å
+C
( 2n + 1)!
n =1
sin ( x )
ò x dx .
-1) x 2n+1
(
C) å
+C
n=0 ( 2n +1) ( 2n +1)!
¥
¥
n
E) NOTA
¥
n 2 7n
.
n!
n=0
19. Find the value of å
A) 56e 7
B) 34e8
C) 64e9
D) 49e10
E) NOTA
20. Determine the common ratio of an infinite geometric series with first term i -1 and
sum 5i + 7 .
15 - 5i
42 - i
38 - 6i
22 - 4i
A)
B)
C)
D)
E) NOTA
33
18
37
7
21. Find a power series, centered at x = 0 , for f ( x ) =
¥
A)
åx
¥
3n+1
B)
n=0
åx
¥
2n+1
n=0
22. Given the sequence an =
A) -
1
2
C)
B) 0
åx
x
.
1- x 3
¥
n+1
D)
n=0
åx
n
E) NOTA
n=0
n n e nx
a
, for what value of x will n+1 converge to
n!
an
1
C)
D) 1
E) NOTA
2
1
23. Evaluate 1+
1
1+
2+ 5
B)
2
1+
A)
1+ 5
2
C)
3+ 5
2
D)
4+ 5
2
E) NOTA
e?
Mu Sequences and Series
National Convention 2012
24. The first 3 terms of the binomial expansion of 9 - x are
x x2
x x2
x x2
A) 3- +
B) 3- C) 4 - 2 216
6 216
6 64
E) NOTA
¥
25. Evaluate
å
(-1)
n
2n
n!
2
B) e -1
x x2
D) 4 + 2 216
.
n=1
A) e 2 +1
C) e-2 +1
D) e-2 -1
E) NOTA
26. If the sequence {an } is recursively defined by a1 = 2 and an+1 = an + 2n for n ³1then find
a100 .
A) 9900
B 9901
C) 9902
D) 9903
E) NOTA
n
æ 3ö
27. Let A = åç ÷ . Evaluate the error if the first one hundred terms are used to
è ø
n=0 8
approximate the summation.
¥
A)
397
5× 899
B)
398
5× 899
C)
¥
28. For what value of k will
A) k < 1
E) NOTA
399
5× 899
åk
B) -1 < k £ 1
n=0
-n
D)
3100
5× 899
E) NOTA
converge?
C) (-¥,-1) È (1,¥)
D) (-¥,¥)
æ pö
p
29. The coefficient of ç x - ÷ in the Taylor expansion of y = cos x about x = is
è
4ø
4
2
2
2
2
A)
B)
C)
D)
E) NOTA
12
24
36
48
4
30. Evaluate
¥
å
n=1
( 3)
A) ln 2
( -1)n+1
n3n
( 3)
B) ln 4
C) ln ( 2)
( 3)
D) ln 8
E) NOTA