I: (Single Correct Answer Type)

This section contains 8 multiple questions. Each
question has four choices (A), (B), (C) and (D) out of
s.c
which ONLY one is correct.
om
SECTION - I: (Single Correct Answer Type)
1. Let a1, a2, a3, … be in harmonic progression with a1 = 5 and
(B) 23
(C) 24
Pio
ne
er
ma
t
he
(A) 22
ma
tic
a20 = 25. The least positive integer n for which an < 0 is
(D) 25
The equation of a plane passing through the line of
intersection of the planes x + 2y + 3z = 2 and x – y + z =
2
from the point (3, 1, – 1) is
3
(A) 5x  11y  z  17
(B) 2x  y  3 2  1
(C) x  y  z  3
ma
tic
(D)
ne
er
ma
t
he
x  2y 1  2
s.c
3 and at a distance
3.
Let PQR be a triangle of area  with
Pio
a  2, b 
7
5
and c  , where a, b and c are the lengths
2
2
of the sides of the triangle opposite to the angles at P, Q
and R respectively.
om
2.
3
4
(B)
2
45
4
2
 45 
(D) 

 4 
Pio
ne
er
ma
t
he
ma
tic
 3 
(C) 

 4 
om
(A)
2 sin P  sin 2P
equals
2 sin P  sin 2P
s.c
Then
om
s.c
ma
tic
he
ma
t
4.
 


If a and b are vectors such that a  b  29 and


a  2i  3j  4k  2i  3j  4k  2i  3j  4k  b,
 
 

 
then a possible value of  a  b  .  7i  2j  3k  is
er

Pio
ne
(A) 0
(B) 3
(D) 8
5.
he
ma
tic
s.c
om
(C) 4
If P is a 3  3 matrix such that PT = 2P + I, where PT is
ma
t
the transpose of P and I is
3  3 the identity matrix, then there exists a column
er
 x  0
matrix X =  y   0 such that
 z  0
Pio
ne
0
(A) PX  0
0
(B) PX = X
(D) PX = – X
Let and   a  and   a  be the roots of the equation

3

1  a  1 x2 
Then
lim
a 0

 
1 a 1 x 
   a  and
5
(A)  and 1
2
6

1  a  1  0 where a  1
lim
a 0
1
(B)  and  1
2
ne
er
ma
t
7
(C)  and 2
2
Pio
  a  are
he
6.
ma
tic
s.c
om
(C) PX = 2X
(D)
7.
ma
t
he
ma
tic
s.c
om
9
 and 3
2
Four fair dice D1, D2, D3 and D4, each having six faces
numbered 1, 2, 3, 4 , 5 and 6, are rolled simultaneously .
er
The probability that D4 shows a number appearing on
one of D1, D2 and D3 is
91
216
Pio
ne
(A)
(B)
108
216
(D)
127
216
om
125
216
8.
The value of the integral
/2
x 
 2
x

ln

 cos x dx is



x

/2
(B)
Pio
ne
er
ma
t
(C)
2
4
2
2
4
2
he
(A) 0
ma
tic
s.c
(C)
SECTION -II: Paragraph Type
2
(D)
2
relating to three paragraphs with two questions on each
paragraph. Each question has four choices (A), (B), (C)
Paragraph for Questions 49 and 50
s.c
and (D) out of which ONLY ONE is correct.
om
This section contains 6 multiple choice questions
A tangent PT is drawn to the circle x2 + y2 = 4 at the


3 , 1 , A straight line L, perpendicular to PT
ma
tic
point P
2
is a tangent to the circle  x  3  y 2  1.
A possible equation of L is
(A) x  3 y  1
(B) x  3 y  1
x  3 y 1
(D) x  3 y  5
Pio
ne
er
ma
t
he
9.
(C)
(A) x = 4
om
(C) x + 3 y=
(D) x  2 2 y  6
Pio
ne
er
ma
t
he
ma
tic
4
(B) y = 2
s.c
10. A common tangent of the two circles is
Paragraph for Questions 51 and 52
om
2
Let f  x   1  x  sin2 x  x 2 for all x  IR , and let
 2 t  1

gx  
 1nt  f(t) dt for all x  1,   .
t 1

1
11. Consider the statements :

f  x   2x  2 1  x2

ma
tic
P : There exists some x  IR such that
s.c
x
Q : There exists some x  IR such that
2f  x   1  2x 1  x 
Then
is false
Pio
ne
er
ma
t
(C) P is false and Q is true
are false
(B) P is true and Q
he
(A) both P and Q are true
(D) both P and Q
(A) g is increasing on 1,  
(B) g is decreasing on
s.c
1,  
om
12. Which of the following is true?
(C) g is increasing on (1, 2) and decreasing on 2,  
he
ma
tic
(D) g is decreasing on (1, 2) and increasing on  2,  
ma
t
SECTION - I: (Single Correct Answer Type)
Paragraph for Questions 53 and 54
Let an denote the number of all n-digit positive integers
er
formed by the digits 0, 1 or both such that no
consecutive digits are 0. Let bn = the number of such n-
ne
digit integers ending with digit 1 and cn = the number of
such n-digit integers ending with digit 0.
Pio
13. The value of b6 is
(A) 7
(B) 8
(C) 9
ma
tic
s.c
om
(D) 11
14. Which of the following is correct?
(B) c17  c16  c15
(A) a17  a16  a15
Pio
ne
er
ma
t
a17  c17  b16
he
(C) b17  b16  c16
(D)
om
s.c
ma
tic
SECTION III: Multiple Correct Answer (s) Type
he
This section contains 6 multiple choice questions. Each
question has four choices (A), (B), (C) and (D) out of
ma
t
which ONE or MORE are correct.
15. For every integer n, let an and bn be real numbers. Let
function f: IR  IR be given by
for x  [2n, 2n  1]
, for all int egers n.
for x   2n  1, 2n 
er
 a n  sin  x,
f x  
bn  cos  x,
If f is continuous, then which of the following hold(s) for
ne
all n?
(A) a n1  bn1  0
Pio
(C) a n  bn1  1
(B) a n  bn  1
(D) a n1  bn  1
om
s.c
ma
tic
16. If the straight lines
x 1 y 1 z

 and
2
k
2
x 1 y 1 z

 are coplanar, then the plane(s)
5
2
k
(B) y + z = – 1
Pio
ne
er
ma
t
(A) y + 2z = – 1
he
containing these two lines is(are)
(D) y – 2z = – 1
ma
t
he
ma
tic
s.c
om
(C) y – z = – 1
er
1, 4 4
17. If the adjoint of a 3  3 matrix P is  2 1 7  , then the
 1 1 3 
ne
possible value(s) of the determinant of P is (are)
Pio
(A) – 2
(B) – 1
(D) 2
18.
Let f :  1, 1  R be such that
I
f  cos 4  
2
   
for

 0,    ,  . Then the
2  sec2 
 4 4 2
3
2
(B) 1 
2
3
Pio
ne
er
ma
t
(C) 1 
3
2
he
1
value(s) of f   is (are)
3
(A) 1 
ma
tic
s.c
om
(C) 1
(D)
om
2
3
he
ma
tic
s.c
1
19.
ma
t
Let X and Y be two events such that
1
1
1
P  X Y   , P  Y X   and P  X  Y   . Which of
2
3
6
the following is (are) correct?
2
3
er
(A) P  X  Y  
and Y are independent
ne
(C) X and Y are not independent


Pio
(D) P X c  Y 
1
3
(B) X
om
s.c
ma
tic
he
ma
t
x
2
20. If f  x    et  t  2 t  3 dt for all x  0,   , then
0
er
(A) f has a local maximum at x = 2
(B) f is decreasing on (2, 3)
Pio
ne
(C) there exists some c   0,   such that f’’(c) = 0
Pio
ne
er
ma
t
he
ma
tic
s.c
om
(D) f has a local minimum at x = 3