2. Simplex Method – standard form Key concept:Change constraints from inequality to equality then find the solutions of the linear equations’ system. x1 + x2 3 x1 - 2x2 ≤ 4 加上slack variable ( 0) 使得等式成立 x1 - 2x2 + s1 = 4 x1 + x2 – s2 = 3 Maximize f = 4x1 + 3x2 x1 + x2 ≤ 3 2x1 - x2 3 7/14/2017 x1 0, x2 0 加上surplus variable ( 0) 使得等式成立 Maximize f = 4x1 + 3x2 標準化 x1 + x2 + s1 =3 2x1 - x2 - s2 = 3 x1, x2, s1, s2 0 1 a11xc1 1+x1a12 + a+1ncxnnx= + xc22x+2 … +… n b1 2.1 The steps of Simplex Method 1. Transform into standard form. 2. Establish simplex tableau. 目標函數 的係數 3. Choose the basic variables xB for initial feasible solution. (正常狀況下是slack var.s) Max 4. Calculate the cost fj of each xj to produce i objective benefit. 5. Calculate the pure objective benefit Cj – fj 1 of each xj under the current xB. 6. Choose the max benefit producer xj* (the xj with max Cj – fj) as pivot variable. 2 Simplex Tableau C1 C2 .. Cj .. Cn cB xB x1 x2 .. xj*.. xn bi i cB1 xB1 a11 a12 … a1n b1 b1 a1j cB2 xB2 a21 a22 … a2n b2 b2 a2j amn bm bm amj 技術矩陣 7. Do the ratio test i = bi/aijof each xBi. … … … … Replace xB* (the xB having min i) with xj*. 8. Do pivoting (elementary row operations), m cBm xBm am1 am2 such that aij* = 1 (aij*: the coefficient in xB*’s row and xj*’s column), and such that the other coefficients in xj*’s column ∑icBiaij fj are 0. ------ A new tableau is obtained. Cj-fj … 9. Repeat from 4. until no Cj – fj > 0. x 在目標函 B 數上的係數 7/14/2017 ∑icBibi 目標函數值 2 2.2 Simplex method’s example Max f = 12x1 + 8x2 + 0s1 + 0s2 + 0s3 Max f = 12x1 + 8x2 5x1 + 2x2 + s1 step 1 5x1 + 2x2 ≤ 150 2x1 + 3x2 step 2 2x1 + 3x2 ≤ 100 4x1 + 2x2 ≤ 80 x1, x 2 0 Cj 12 4x1 + 2x2 step 3 step 4 step 5 i cB xB 8 0 0 = 150 + s2 = 100 + s3 = 80 x 1 , x 2 , s1 , s 2 , s3 0 0 bi i 0 150 30 1 0 100 50 0 0 1 80 20 0 0 0 0 ∑icBibi=0 8 0 0 0 x1 x2 s1 s2 s3 1 cB1=0 xB1=s1 5 2 1 0 2 cB2=0 xB2=s2 2 3 0 3 cB3=0 xB3=s3 4 2 fj 0 Cj-fj 12 step 6 step 7 step 8 step 9 7/14/2017 pivot Variable x1 ratio test pivoting Row 3 用x1換s3 x [N|B] x = [b] Initial N -1 Feasible B NX + X B-1[b] NXN +NBXBB==[b] Solution B 3 Max f = 12x1 + 8x2 + 0s1 + 0s2 + 0s3 2.2 Simplex method’s example – cont’s 5x1 + 2x2 + s1 = 150 2x1 + 3x2 + s2 = 100 4x1 + 2x2 + s3 = 80 Pivoting x 1 , x 2 , s1 , s2 , s3 0 Loop 1 step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 Loop 2 step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 Cj 12 8 0 0 0 s3 step 9 i cB xB x1 x2 s1 s2 1 cB1=0 xB1=s1 50 -0.5 2 1 0 150 -1.25 50 0 2 cB2=0 xB2=s2 20 32 0 1 -0.5 0 3 ccB3B3=12 =0 xB3=x =s1 41 0.5 2 0 0 0.25 1 fj 0 12 06 0 0 03 Cj-fj 12 0 82 0 0 -3 0 7/14/2017 bi i - -5*Row3+Row1 100 60 30 -2*Row3+Row2 80 20 40 Row3/4 ∑ ∑icicBiBibbi=240 i=0 4 2.2 Simplex method’s example – cont’s step 1 step 2 Cj step 3 step 4 step 5 12 8 0 0 0 step 6 step 7 step 8 step 9 i cB xB x1 x2 s1 s2 s3 bi 1 cB1=0 xB1=s1 0 0 1 0.25 -1.375 65 2 cB2=8 xB2=x2 0 1 0 0.5 -0.25 30 3 cB3=12 xB3=x1 1 0 0 -0.25 0.375 5 fj 12 8 0 1 2.5 Cj-fj 0 0 0 -1 -2.5 沒有大於0的值 7/14/2017 i ∑icBibi=300 x1 = 5, x2 = 30, Max f =300 5 2.3 Summary for simplex method Maximize f = C1x1 + C2x2 + … + Cnxn a11x1 + a12x2 + … + a1nxn = b1 a21x1 + a22x2 + … + a2nxn = b2 …… ai1x1 + ai2x2 + … + ainxn = bi …… am1x1 + am2x2 + … + amnxn = bm x1, x2, …, xn 0 7/14/2017 C1 C2 .. Cj .. Cn i cB xB x1 x2 .. xj*.. xn bi i 1 cB1 xB1 a11 a12 … a1n b1 b1 a1j 2 cB2 xB2 a21 a22 … a2n b2 … … … amn bm m cBm xBm … am1 am2 fj ∑icBiaij Cj-fj … ∑icBibi 6 2.3.1 simplex method example again (example from Topic 1) Max f = 1.5xa + 1.2xg Max f = 1.5xa + 1.2xg 1.5xa + 2xg ≤ 1200 1.5xa + 2xg + s1 標準化 3xa + 3xg ≤ 2100 6xa + 3xg ≤ 3600 xa, xg 0 Cj 1.5 1.2 i cB xB 3xa + 3xg + s2 = 2100 6xa + 3xg + s3 = 3600 xa, xg, s1, s2, s3 0 0 0 0 xg s1 s2 s3 1 cB1=0 xB1=s1 1.5 2 1 0 0 1200 800 2 cB2=0 xB2=s2 3 3 0 1 0 2100 700 3 cB3=0 xB3=s3 6 3 0 0 1 3600 0 0 0 0 0 ∑icBibi=0 0 0 0 Cj-fj 1.5 1.2 bi i xa fj 7/14/2017 = 1200 600 7 2.3.1 simplex method example again (cont’) Cj 1.5 1.2 0 0 0 cB xB xa xg s1 s2 1 cB1=0 xB1=s1 0 cB2=0 xB2=s2 -1/4 2 3/2 3* 1 2 0 1.5 03 0 1 xB3=xa 16 0 0 fj 1/2 3 1.5 0 0.75 0 0 0 -1/2 0 2100 300 200 (-3)+ ? 1/6 600 1200 1 3600 6 0.25 0 ∑icBibi=900 Cj-fj 1.5 0 0.45 1.2 0 0 0 1.5xg +s2-0.5s3= 300 -0.25 3 cB3=1.5 Cj 1.5 1.2 0 0 s3 bi -1/4 300 0 1200 i i – s2= 300-1.5xg+0.5s3 s2 /1.5= 300/1.5-xg+(0.5/1.5)s3 0 xg= 200-2s2 /3 +s3/3 <<< i=2 xg= 1200-2xa+(1/3)s3<<< i=3 s3 s2對目標函數值最沒貢獻, bi i 所 i cB xBB xa xg s1 s2 1 cB1=0 xB1 B1=s11 0 -1/4 0 1 0 1/6 2 cB2=1.2 xB2 B2=xgg 0 1 0 2/3 -1/3 200 3 cB3=1.5 xB3=xaa 1 1/2 0 0 0 -1/3 1/6 1/3 1.5 0.75 1.2 0 0 0.9 0.25 0.1 600 500 ∑icBibi=900 =990 0 0 -0.25 -0.9 -0.1 fjj 7/14/2017 Cjj-fjj 0 0.45 0 (-1.5)+ -1/4以換成有貢獻的x 300 -1/3 350 g 8 fj 與Cj-fj是什麼? 5x1 + 2x2 + s1 = 150 s1 = 150 - 5x1 - 2x2 x1每增加1 每個s1就會減少5 2x1 + 3x2 + s2 = 100 s2 = 100 - 2x1 - 3x2 x1每增加1 每個s2就會減少2 4x1 + 2x2 + s3 = 80 s3 = 80 - 4x1 - 2x2 x1每增加1 每個s3就會減少4 fj 是xj生產basic var.s的單位成本 Cj-fj 是xj當basic var.s後可創造的單位利益 7/14/2017 9
© Copyright 2026 Paperzz