線性代數 Quiz3 3-5~4.2 1 1. Ture or False (a). A zero vector space is an empty set. F 由單一物件 0 組成 𝑉= 𝟎 (See 4.1 定義1 & 例題1) 2 1. Ture or False (b). If W is a subspace of 𝑅3 containing a plane and a point not in the plane, then 𝑊 = 𝑅3 . T 𝑅3 子空間 𝟎 通過原點的直線 通過原點的平面 𝑅3 3 1. Ture or False (c). The set 𝑅2 is a subspace of 𝑅3 . T 𝑅3 子空間 𝟎 通過原點的直線 通過原點的平面 𝑅3 4 1. Ture or False (d). If u, v and w are vectors in 𝑅3 , 𝐮 ∙ (𝐯 × 𝐰) = 0 iff the 3 vectors lie in the same plane. T 定理3.5.5: 若 u、v、w 為 𝑅3 上之向量,且有共同起始點,則三向量共 平面,若 𝑢1 𝑢2 𝑢3 𝐮 ∙ 𝐯 × 𝐰 = 𝑣1 𝑣2 𝑣3 = 0 𝑤1 𝑤2 𝑤3 平行六面體無體積 or 共平面上三向量中的任兩向量外積與剩餘向量正交 5 1. Ture or False (e). If u, v and w are vectors in 𝑅3 , where u is a nonzero vector and 𝐮 × 𝐯 = 𝐮 × 𝐰, then 𝐯 = 𝐰. F 讓 𝐮 = 0, 0, 1 , 𝐯 = 0, 0, 0 , 𝐰 = 0, 0, 1 𝐮 × 𝐯 = 0, 0, 0 𝐮 × 𝐰 = 0, 0, 0 但是 𝐯 ≠ 𝐰 6 1. Ture or False (f). The set of all 3 × 3 triangular matrices equipped with the standard operations is a vector space. T 3 × 3 矩陣所成的集合 𝑀33 ,在平常的矩陣加法、 純量乘法運算下是一個向量空間,三角矩陣所成 集合為 𝑀33 的子空間 ,亦為一個向量空間 參考 4.1 例題4 & 4.2 例題5 7 2. If 𝐮 ∙ 𝐯 × 𝐰 = 6, find (a). 𝐮 𝐰 ∙ 𝐯 𝑢1 𝑢2 𝐮 ∙ 𝐰 × 𝐯 = 𝑤1 𝑤2 𝑣1 𝑣2 𝑢1 𝑢2 𝐮 ∙ 𝐯 × 𝐰 = 𝑣1 𝑣2 𝑤1 𝑤2 ⇒ 𝐮 𝐰 ∙ 𝐯 = −6 𝑢3 𝑤3 𝑣3 𝑢3 𝑣3 𝑤3 change(2)(3)row 8 2. If 𝐮 ∙ 𝐯 × 𝐰 = 6, find (b). 𝐰 𝐯 ∙ 𝐮 𝑤1 𝑤2 𝐰 ∙ 𝐯 × 𝐮 = 𝑣1 𝑣2 𝑢1 𝑢2 𝑢1 𝑢2 𝐮 ∙ 𝐯 × 𝐰 = 𝑣1 𝑣2 𝑤1 𝑤2 ⇒ 𝐰 𝐯 ∙ 𝐮 = −6 𝑤3 𝑣3 𝑢3 𝑢3 𝑣3 𝑤3 change(1)(3)row 9 2. If 𝐮 ∙ 𝐯 × 𝐰 = 6, find (c). 𝐯 𝐰 ∙ 𝐮 𝑣1 𝑣2 𝐯 ∙ 𝐰 × 𝐮 = 𝑤1 𝑤2 𝑢1 𝑢2 𝑤1 𝑤2 𝐰 ∙ 𝐯 × 𝐮 = 𝑣1 𝑣2 𝑢1 𝑢2 ⇒𝐰 𝐯∙𝐮 =6 𝑣3 𝑤3 𝑢3 𝑤3 𝑣3 𝑢3 change(1)(2)row 10 3. Let V be the set of all ordered pairs of real numbers, and consider the following addition and scalar multiplication operations on 𝐮 = 𝑢1 , 𝑢2 and 𝐯 = 𝑣1 , 𝑣2 : 𝐮 + 𝐯 = 𝑢1 + 𝑣1 − 1, 𝑢2 + 𝑣2 − 1 , 𝑘𝐮 = 𝑘𝑢1 , 𝑘𝑢2 (a). Compute 𝐮 + 𝐯 and 𝑘𝐮 for 𝐮 = (1, −2), 𝐯 = (2, 0), and 𝑘 = 3. 𝐮 + 𝐯 = 1, −2 + 2, 0 = (2, −3) 𝑘𝐮 = 3 1, −2 = 3, −6 11 3. Let V be the set of all ordered pairs of real numbers, and consider the following addition and scalar multiplication operations on 𝐮 = 𝑢1 , 𝑢2 and 𝐯 = 𝑣1 , 𝑣2 : 𝐮 + 𝐯 = 𝑢1 + 𝑣1 − 1, 𝑢2 + 𝑣2 − 1 , 𝑘𝐮 = 𝑘𝑢1 , 𝑘𝑢2 (b). Show that (0, 0) ≠ 𝟎. 讓 𝐯 = 0, 0 根據題目定義 𝐮 + 𝐯 = 𝑢1 + 0 − 1, 𝑢2 + 0 − 1 = (𝑢1 − 1, 𝑢2 − 1) 𝐮 + 0, 0 ≠ 𝐮 ,因此 (0, 0) ≠ 𝟎 12 3. Let V be the set of all ordered pairs of real numbers, and consider the following addition and scalar multiplication operations on 𝐮 = 𝑢1 , 𝑢2 and 𝐯 = 𝑣1 , 𝑣2 : 𝐮 + 𝐯 = 𝑢1 + 𝑣1 − 1, 𝑢2 + 𝑣2 − 1 , 𝑘𝐮 = 𝑘𝑢1 , 𝑘𝑢2 (c). Show that 1, 1 = 𝟎. 讓 𝐯 = 1, 1 根據題目定義 𝐮 + 𝐯 = 𝑢1 + 1 − 1, 𝑢2 + 1 − 1 = (𝑢1 , 𝑢2 ) 𝐮 + 1, 1 = 𝐮 ,因此 1, 1 = 𝟎 13 4. Find the area of the triangle in 3-space that has the given vertices: 𝑃 2, 6, −1 , 𝑄 1, 1, 1 , 𝑅 4, 6, 2 . 在 𝑅3 上 𝑃𝑄 = −1, −5, 2 , 𝑃𝑅 = 2, 0, 3 𝑃𝑄 × 𝑃𝑅 = −1, −5, 2 × 2, 0, 3 −1 2 −1 −5 −5 2 = ,− , 2 3 0 3 2 0 1 2 𝑃𝑄 × 𝑃𝑅 = 1 2 −15 2 + −7 = −15, −7, 10 2 + 102 = 374 2 14 5. Describe the definition of a vector space using no more than 30 words. A nonempty set(4%) of objects equipped with two operations, called addition(4%) and scalar multiplication(4%) , satisfying the 10 axioms given in Section 4.1(4%) 15
© Copyright 2026 Paperzz