Optimising polynomials over a simplex: PTAS proofs revisited Etienne de Klerk, Monique Laurent, and Zhao Sun Nanyang Technological University, Singapore (On leave from Tilburg University, The Netherlands) Etienne de Klerk (NTU) Optimising polynomials over a simplex 1 / 15 Introduction Outline Polynomial optimisation over a simplex: example and complexity; Known PTAS approximation results; New PTAS proofs via Bernstein approximation. Etienne de Klerk (NTU) Optimising polynomials over a simplex 2 / 15 Introduction Polynomial optimization on a simplex Standard simplex in Rn ( ∆n = ) n x ∈R | X xi = 1, ∀ i : xi ≥ 0 . i Given f ∈ Hn,d (homogeneous n-variate polynomial of degree d), we consider the following. Optimization problems: Find: f = min f (x), x∈∆n Etienne de Klerk (NTU) f = max f (x). x∈∆n Optimising polynomials over a simplex 3 / 15 Introduction Polynomial optimization on a simplex Standard simplex in Rn ( ∆n = ) n x ∈R | X xi = 1, ∀ i : xi ≥ 0 . i Given f ∈ Hn,d (homogeneous n-variate polynomial of degree d), we consider the following. Optimization problems: Find: f = min f (x), x∈∆n f = max f (x). x∈∆n Famous example for quadratic f : computing the stability number of a graph ... (next slide) Etienne de Klerk (NTU) Optimising polynomials over a simplex 3 / 15 Introduction Stable sets The stability number Given a graph G = (V , E ), a stable set is a subset of V of pairwise non-adjacent vertices. Etienne de Klerk (NTU) Optimising polynomials over a simplex 4 / 15 Introduction Stable sets The stability number Given a graph G = (V , E ), a stable set is a subset of V of pairwise non-adjacent vertices. The cardinality of a maximum stable set is called the stability number and denoted by α(G ). Etienne de Klerk (NTU) Optimising polynomials over a simplex 4 / 15 Introduction Stable sets The stability number Given a graph G = (V , E ), a stable set is a subset of V of pairwise non-adjacent vertices. The cardinality of a maximum stable set is called the stability number and denoted by α(G ). For the Petersen graph, α(G ) = 4. Etienne de Klerk (NTU) Optimising polynomials over a simplex 4 / 15 Introduction The Motzkin-Straus theorem Theorem (Motzkin-Straus ’65) 1 = min x T (A + I )x, α(G ) x∈∆V where A is the adjacency matrix of G = (V , E ) and I the identity matrix. Etienne de Klerk (NTU) Optimising polynomials over a simplex 5 / 15 Introduction The Motzkin-Straus theorem Theorem (Motzkin-Straus ’65) 1 = min x T (A + I )x, α(G ) x∈∆V where A is the adjacency matrix of G = (V , E ) and I the identity matrix. Theorem (Håstad (2001)) Unless NP=ZPP, one cannot approximate α(G ) to within a factor |V |(1−) in polynomial time for any > 0. Etienne de Klerk (NTU) Optimising polynomials over a simplex 5 / 15 Introduction The Motzkin-Straus theorem Theorem (Motzkin-Straus ’65) 1 = min x T (A + I )x, α(G ) x∈∆V where A is the adjacency matrix of G = (V , E ) and I the identity matrix. Theorem (Håstad (2001)) Unless NP=ZPP, one cannot approximate α(G ) to within a factor |V |(1−) in polynomial time for any > 0. Corollary: Computing f := minx∈∆ f (x) is NP-hard, even for quadratic f , and allows no FPTAS, unless NP=ZPP. Etienne de Klerk (NTU) Optimising polynomials over a simplex 5 / 15 Introduction Approximation results Notation Given an integer r ≥ 0, denote ∆(n, r ) = {x ∈ ∆n | rx ∈ Nn0 } and f∆(n,r ) = Etienne de Klerk (NTU) min f (x). x∈∆(n,r ) Optimising polynomials over a simplex 6 / 15 Introduction Approximation results Notation Given an integer r ≥ 0, denote ∆(n, r ) = {x ∈ ∆n | rx ∈ Nn0 } and f∆(n,r ) = min f (x). x∈∆(n,r ) Known PTAS results: Theorem (Bomze-De Klerk (2002), De Klerk-Laurent-Parrilo (2006)) If f quadratic f∆(n,r ) − f ≤ Etienne de Klerk (NTU) 1 f −f . r Optimising polynomials over a simplex 6 / 15 Introduction Approximation results Notation Given an integer r ≥ 0, denote ∆(n, r ) = {x ∈ ∆n | rx ∈ Nn0 } and f∆(n,r ) = min f (x). x∈∆(n,r ) Known PTAS results: Theorem (Bomze-De Klerk (2002), De Klerk-Laurent-Parrilo (2006)) If f quadratic f∆(n,r ) − f ≤ 1 f −f . r If f ∈ Hn,d : f∆(n,r ) − f ≤ Etienne de Klerk (NTU) 1 r +d dd 2d − 1 d f −f . d 2 Optimising polynomials over a simplex 6 / 15 Introduction PTAS results (ctd) The PTAS proofs are essentially by examination of the proof of Pólya’s theorem: Theorem (Pólya (1928)) If f ∈ Hn,d and f (x) > 0 for all x ∈ ∆n , then f (x) n X !r xi i=1 has nonnegative coefficients for some r ∈ N0 . Etienne de Klerk (NTU) Optimising polynomials over a simplex 7 / 15 Introduction PTAS results (ctd) The PTAS proofs are essentially by examination of the proof of Pólya’s theorem: Theorem (Pólya (1928)) If f ∈ Hn,d and f (x) > 0 for all x ∈ ∆n , then f (x) n X !r xi i=1 has nonnegative coefficients for some r ∈ N0 . Background reading V. Powers and B. Reznick. A new bound for Pólyas theorem with applications to polynomials positive on polyhedra. Journal of Pure and Applied Algebra, 164:221–229, 2001. Etienne de Klerk (NTU) Optimising polynomials over a simplex 7 / 15 Introduction PTAS results (ctd) The PTAS proofs are essentially by examination of the proof of Pólya’s theorem: Theorem (Pólya (1928)) If f ∈ Hn,d and f (x) > 0 for all x ∈ ∆n , then f (x) n X !r xi i=1 has nonnegative coefficients for some r ∈ N0 . Background reading V. Powers and B. Reznick. A new bound for Pólyas theorem with applications to polynomials positive on polyhedra. Journal of Pure and Applied Algebra, 164:221–229, 2001. One can also do PTAS proofs via Bernstein approximation ... (next slide) Etienne de Klerk (NTU) Optimising polynomials over a simplex 7 / 15 Introduction Bernstein approximation Definition: I (n, r ) = {α ∈ Nn0 : |α| = r } = r ∆(n, r ). Etienne de Klerk (NTU) Optimising polynomials over a simplex 8 / 15 Introduction Bernstein approximation Definition: I (n, r ) = {α ∈ Nn0 : |α| = r } = r ∆(n, r ). Bernstein approximation of f of order r ∈ N: α r! X Br (f )(x) = f x α. r α! α∈I (n,r ) Etienne de Klerk (NTU) Optimising polynomials over a simplex 8 / 15 Introduction Bernstein approximation Definition: I (n, r ) = {α ∈ Nn0 : |α| = r } = r ∆(n, r ). Bernstein approximation of f of order r ∈ N: α r! X Br (f )(x) = f x α. r α! α∈I (n,r ) Lemma min Br (f )(x) ≥ f∆(n,r ) ≡ x∈∆n min f (x). x∈∆(n,r ) Follows directly from the multinomial theorem: !r n X X r! xi = x α (= 1 if x ∈ ∆n ). α! i=1 Etienne de Klerk (NTU) α∈I (n,r ) Optimising polynomials over a simplex 8 / 15 Introduction Bernstein approximation and multinomial moments Let β ∈ I (n, d) and consider the monomial φβ (x) = x β ≡ x1β1 · · · xnβn . We want to analyse its Bernstein approximation: Br (φβ )(x) = X α∈I (n,r ) Etienne de Klerk (NTU) r! (α/r )β x α . α! Optimising polynomials over a simplex 9 / 15 Introduction Bernstein approximation and multinomial moments Let β ∈ I (n, d) and consider the monomial φβ (x) = x β ≡ x1β1 · · · xnβn . We want to analyse its Bernstein approximation: Br (φβ )(x) = X α∈I (n,r ) r! (α/r )β x α . α! Multinomial distribution Consider a loaded dice with n sides, and assume the probability of seeing i is xi . The probability of observing an outcome α ∈ I (n, r ) after rolling the dice r times r! α is α! x , Etienne de Klerk (NTU) Optimising polynomials over a simplex 9 / 15 Introduction Bernstein approximation and multinomial moments Let β ∈ I (n, d) and consider the monomial φβ (x) = x β ≡ x1β1 · · · xnβn . We want to analyse its Bernstein approximation: Br (φβ )(x) = X α∈I (n,r ) r! (α/r )β x α . α! Multinomial distribution Consider a loaded dice with n sides, and assume the probability of seeing i is xi . The probability of observing an outcome α ∈ I (n, r ) after rolling the dice r times r! α is α! x , and the moment of order β ∈ I (n, d) is therefore X α∈I (n,r ) Etienne de Klerk (NTU) r! (α)β x α = r d Br (φβ )(x). α! Optimising polynomials over a simplex 9 / 15 Introduction Multinomial moments The moment generating function of the multinomial distribution is: !r n X ti mgf (t) := xi e i=1 so that Etienne de Klerk (NTU) |β| ∂ mgf (t) r d Br (φβ )(x) = β1 βn ∂t1 · · · ∂tn Optimising polynomials over a simplex . t=0 10 / 15 Introduction Multinomial moments The moment generating function of the multinomial distribution is: !r n X ti mgf (t) := xi e i=1 so that |β| ∂ mgf (t) r d Br (φβ )(x) = β1 βn ∂t1 · · · ∂tn . t=0 Corollary n 1 X |α| α Y Br (φβ )(x) = d r x S (βi , αi ) , r 0≤α≤β i=1 where S (βi , αi ) is the Stirling number of the second kind, r |α| = r (r − 1) · · · (r − |α| + 1). Etienne de Klerk (NTU) Optimising polynomials over a simplex 10 / 15 Introduction Example: PTAS for quadratic f φ(x) = xi xj φ(x) = xi2 r −1 xi xj r 1 =⇒ Br (φ)(x) = xi (1 − xi ) + xi2 r =⇒ Br (φ)(x) = Bernstein approximation of quadratic f Pn If f = i,j=1 Qij xi xj : Br (f )(x) = n 1X 1 Qii xi + 1 − f (x). r r i=1 Etienne de Klerk (NTU) Optimising polynomials over a simplex 11 / 15 Introduction Example: PTAS for quadratic f (ctd.) Theorem (Bomze-De Klerk (2002)) If f quadratic f∆(n,r ) − f ≤ Etienne de Klerk (NTU) 1 f −f . r Optimising polynomials over a simplex 12 / 15 Introduction Example: PTAS for quadratic f (ctd.) Theorem (Bomze-De Klerk (2002)) If f quadratic f∆(n,r ) − f ≤ 1 f −f . r Proof: min Br (f )(x) x∈∆n Etienne de Klerk (NTU) = min x∈∆n ! n 1X 1 Qii xi + 1 − f (x) r r i=1 Optimising polynomials over a simplex 12 / 15 Introduction Example: PTAS for quadratic f (ctd.) Theorem (Bomze-De Klerk (2002)) If f quadratic f∆(n,r ) − f ≤ 1 f −f . r Proof: ! n 1X 1 min Br (f )(x) = min Qii xi + 1 − f (x) x∈∆n x∈∆n r r i=1 n X 1 1 ≤ max Qii xi + min 1 − f (x) x∈∆n r x∈∆n r i=1 Etienne de Klerk (NTU) Optimising polynomials over a simplex 12 / 15 Introduction Example: PTAS for quadratic f (ctd.) Theorem (Bomze-De Klerk (2002)) If f quadratic f∆(n,r ) − f ≤ 1 f −f . r Proof: ! n 1X 1 min Br (f )(x) = min Qii xi + 1 − f (x) x∈∆n x∈∆n r r i=1 n X 1 1 ≤ max Qii xi + min 1 − f (x) x∈∆n r x∈∆n r i=1 1 1 = max Qii + 1 − f r i r Etienne de Klerk (NTU) Optimising polynomials over a simplex 12 / 15 Introduction Example: PTAS for quadratic f (ctd.) Theorem (Bomze-De Klerk (2002)) If f quadratic f∆(n,r ) − f ≤ 1 f −f . r Proof: min Br (f )(x) x∈∆n = ≤ = ≤ Etienne de Klerk (NTU) ! n 1X 1 min Qii xi + 1 − f (x) x∈∆n r r i=1 n X 1 1 max Qii xi + min 1 − f (x) x∈∆n r x∈∆n r i=1 1 1 max Qii + 1 − f r i r 1 1 f + 1− f. r r Optimising polynomials over a simplex 12 / 15 Introduction Example: PTAS for quadratic f (ctd.) Theorem (Bomze-De Klerk (2002)) If f quadratic f∆(n,r ) − f ≤ 1 f −f . r Proof: min Br (f )(x) x∈∆n = ≤ = ≤ ! n 1X 1 min Qii xi + 1 − f (x) x∈∆n r r i=1 n X 1 1 max Qii xi + min 1 − f (x) x∈∆n r x∈∆n r i=1 1 1 max Qii + 1 − f r i r 1 1 f + 1− f. r r Now use f∆(n,r ) ≤ minx∈∆n Br (f )(x). Etienne de Klerk (NTU) Optimising polynomials over a simplex 12 / 15 Introduction Small improvements Theorem If f ∈ H(n, 3), then for any integer r ≥ 3, min Br (f )(x) − f ≤ x∈∆n Etienne de Klerk (NTU) 4 4 − 2 r r Optimising polynomials over a simplex (f − f ). 13 / 15 Introduction Small improvements Theorem If f ∈ H(n, 3), then for any integer r ≥ 3, min Br (f )(x) − f ≤ x∈∆n 4 4 − 2 r r (f − f ). This is a small improvement on DK-Laurent-Parrilo (2006). Etienne de Klerk (NTU) Optimising polynomials over a simplex 13 / 15 Introduction Small improvements Theorem If f ∈ H(n, 3), then for any integer r ≥ 3, min Br (f )(x) − f ≤ x∈∆n 4 4 − 2 r r (f − f ). This is a small improvement on DK-Laurent-Parrilo (2006). Theorem If f ∈ H(n, d) is square free, then rd f∆(n,r ) − f ≤ 1 − d (f − f ) for any r ≥ d. r This is a small improvement on Nesterov (2003) and DK-Laurent-Parrilo (2006). Etienne de Klerk (NTU) Optimising polynomials over a simplex 13 / 15 Introduction Conclusion We presented a short proof the PTAS for quadratic optimization over the simplex via Bernstein approximation ... Etienne de Klerk (NTU) Optimising polynomials over a simplex 14 / 15 Introduction Conclusion We presented a short proof the PTAS for quadratic optimization over the simplex via Bernstein approximation ... ... and refined some error bounds for the degree 3 and square-free cases. Etienne de Klerk (NTU) Optimising polynomials over a simplex 14 / 15 Introduction Conclusion We presented a short proof the PTAS for quadratic optimization over the simplex via Bernstein approximation ... ... and refined some error bounds for the degree 3 and square-free cases. Long term project: error bounds for approximation hierarchies via constructive approximation, as started in: E. de Klerk and M. Laurent. Error bounds for some semidefinite programming approaches to polynomial minimization on the hypercube. SIAM Journal on Optimization, 20(6), 3104-3120, 2010. Etienne de Klerk (NTU) Optimising polynomials over a simplex 14 / 15 Introduction The End THANK YOU! (especially to Adam, Joerg, Markus, and Jean-Bernard) Etienne de Klerk (NTU) Optimising polynomials over a simplex 15 / 15
© Copyright 2025 Paperzz