PHY 745 Group Theory 11-11:50 AM MWF Olin 102 Plan for Lecture 5: Representations, characters, and the “great” orthogonality theorem Reading: Chapter 3 in DDJ 1. Finish proof of “Great Orthogonality Theorem” 2. Character of a representation 3. Great orthogonality theorem for charactersPHY 745 Spring 2017 -- Lecture 5 1/23/2017 1 1/23/2017 PHY 745 Spring 2017 -- Lecture 5 2 The great orthogonality theorem on unitary irreducible representations Notation: h order of the group R element of the group ( R ) ith representation of R i denote matrix indices li dimension of the representation ( R) ( R) i R 1/23/2017 * j h ij li PHY 745 Spring 2017 -- Lecture 5 3 Proof of the great orthogonality theorem • Prove that all representations can be unitary matrices • Prove Schur’s lemma part 1 – any matrix which commutes with all matrices of an irreducible representation must be a constant matrix • Prove Schur’s lemma part 2 • Put all parts together 1/23/2017 PHY 745 Spring 2017 -- Lecture 5 4 Proof of the great orthogonality theorem • Prove that all representations can be unitary matrices • Prove Schur’s lemma part 1 – any matrix which commutes with all matrices of an irreducible representation must be a constant matrix • Prove Schur’s lemma part 2 • Put all parts together ( R) ( R) i R 1/23/2017 * j h ij li PHY 745 Spring 2017 -- Lecture 5 5 Construct a 2 1 matrix M 2 ( R ) X 1 ( R 1 ) R Note that: 2 ( S ) M M 1 ( S ) For 2 1 where S is a member of the group Schur's lemma shows that M 0 For X 0 except X 1: 2 1 1 2 1 1 ( R ) X ( R ) ( R ) ( R ) R R ( R) 2 R 1/23/2017 PHY 745 Spring 2017 -- Lecture 5 ( R) 1 * 0 6 Construct a 2 1 matrix M 2 ( R ) X 1 ( R 1 ) R Note that: 2 ( S ) M M 1 ( S ) where S is a member of the group For 2 1, Schur's lemma shows that M sI I ( 1 1 ) identity 1 1 1 ( R ) X ( R ) s R For X 0 except for X 1: 1 1 1 ( R ) ( R ) s R Here s denotes the scalar constant for the particular choice of X . Consider and sum over all : 1 1 1 1 1 1 1 1 1 ( R ) ( R ) ( R ) ( R ) ( R R ) h ( E ) R R R 1 ( R )1 ( R 1 ) h s s R 1/23/2017 PHY 745 Spring 2017 -- Lecture 5 1 7 Proof continued: 1 1 1 ( R ) ( R ) s R h s s 1 h 1 ( R) ( R 1 1 1 ) ( R ) ( R) 1 R 1 R ( R) ( R) i R 1/23/2017 * j * h 1 h ij li PHY 745 Spring 2017 -- Lecture 5 8 ( R) ( R) i * j R h ij li Geometric interpretation: h dimensional vector space should be spanned by representations i ( R ) each of which consists of li2 components. li2 h i For P (3) : 1+1+22 6 For P (4) : 1+1+2 3 3 24 1/23/2017 2 2 2 PHY 745 Spring 2017 -- Lecture 5 9 Characters The character of a representation i for a group element R is defined: i ( R) Tr i ( R ) i ( R ) Note that the character is unique for each irreducible representation. Suppose M ' U † MU Tr(M ') Tr( M ) Details: † † M ' U M U U U ii ij jk ki ki ij M jk jk M jk M jj i ijk ijk jk j Note that all members of a class has the same character for any given representation. Details: i ( X 1RX ) ia ( X 1RX ) = ia ( X 1 ) i ( R)i a ( X ) i a ( X ) ia ( X 1 ) i ( R) 1/23/2017 i = ( E ) i ( R) i ( R) i ( R) PHY 745 Spring 2017 -- Lecture 5 10 Great orthogonality theorem for characters ( R) ( R) * i j R Let and ( R) ( R) * i j R h ij li and perform summations h ij li j ( R ) ( R) h ij * i R In terms of classes C , each with N C elements : j N ( C ) (C ) h ij C i C 1/23/2017 * PHY 745 Spring 2017 -- Lecture 5 11 Example – P(3): Classes: C1 E C2 A, B, C C3 D, F 1 ( A) 1 ( B) 1 (C ) 1 ( D) 1 ( E ) 1 ( F ) 1 2 ( A) 2 ( B) 2 (C ) 1 1 0 3 E 0 1 1 3 C 2 3 2 1/23/2017 2 ( E ) 2 ( D) 2 ( F ) 1 1 0 3 A 0 1 3 2 1 2 1 3 B 2 3 2 3 1 3 12 2 D 3 F 2 3 1 3 2 2 2 PHY 745 Spring 2017 -- Lecture 5 3 2 1 2 1 2 3 2 12 Character table for P(3): 1 ( A) 1 ( B) 1 (C ) 1 ( D) 1 ( E ) 1 ( F ) 1 2 ( A) 2 ( B) 2 (C ) 1 1 0 3 E 0 1 1 3 C 2 3 2 1/23/2017 1 3 B 2 3 2 1 0 3 A 0 1 3 2 1 2 3 12 D 3 2 C1 E Classes: 2 ( E ) 2 ( D) 2 ( F ) 1 3 12 F 3 12 2 3 2 C2 A, B, C 1 2 12 3 2 C3 D, F C1 3C2 2C3 1 1 1 1 2 1 -1 1 3 2 0 -1 PHY 745 Spring 2017 -- Lecture 5 3 2 13 Check orthogonality: N (C ) * i C C j (C ) h ij C1 3C2 2C3 1 1 1 1 2 1 -1 1 3 2 0 -1 2 N ( C ) (C ) 1 2 1 3 0 (1) 2 (1) 1 0 C 3 * C 3 N ( C ) (C ) 1 2 2 3 0 0 2 (1) (1) 6 C 3 * C 1/23/2017 PHY 745 Spring 2017 -- Lecture 5 14 Some further conclusions: j N ( C ) (C ) h ij C * i C The characters i behave as a vector space with the dimension equal to the number of classes. The number of characters=the number of classes Second character identity: h i (Ck ) (Cl ) N kl Ck i 1/23/2017 * i PHY 745 Spring 2017 -- Lecture 5 15 The regular representation is composed of h x h matrices constructed as follows, shown with the P(3) example: 100000 reg reg (E)= 0 1 0 0 0 0 (A)= E-1 A-1 B-1 C-1 D-1 F-1 EABCDF EABCDF AEDFBC BFEDCA CDFEAB FBCAED DCABFE reg 1/23/2017 (D)= 001000 000100 000010 000001 reg (B)= 000010 001000 000100 010000 000001 100000 001000 000010 100000 000001 010000 000100 reg (F)= reg (C)= 000001 000100 010000 001000 100000 000010 PHY 745 Spring 2017 -- Lecture 5 010000 100000 000001 000010 000100 001000 000100 000001 000010 100000 001000 010000 16 Regular representation continued – Note that the regular representation matrices satisfy the multiplication table of the group and have the same class structure as the group. Since the characters of the irreducible representations form a spanning vector space, we can decompose reg ( R) into a linear combination: * 1 i where ai ( R ) reg ( R ) h R ( R ) ai ( R) reg i i By construction: reg ( R) h RE Also note: i ( E ) = i reg ( R ) i i ( R ) i reg ( E ) i i ( E ) i 1/23/2017 so that ai h= i 2 i i PHY 745 Spring 2017 -- Lecture 5 17 Example for P(3): C1 E Classes: C2 A, B, C C1 3C2 2C3 1 1 1 1 2 1 -1 1 3 2 0 -1 C3 D, F reg ( R ) i i ( R) i reg ( E ) i i ( E ) 6=1 1 4 i reg (C2 ) i i (C2 ) 0=1 1 0 i reg (C3 ) i i (C3 ) 0=1+1 2 i 1/23/2017 PHY 745 Spring 2017 -- Lecture 5 18
© Copyright 2025 Paperzz