Formative Instructional and Assessment Tasks Measuring the Jump Ropes 4.MD.1-Task 1 Domain Cluster Standard(s) Materials Measurement and Data Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. 4.MD.1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ... Paper and pencil Measuring the Jump Ropes There are some jump ropes in a container in the gym. The students need to sort them by length. Sally picks all the ropes that are 40 inches or shorter Mary picks all the ropes between 41 and 50 inches long. Tanya picks all the ropes that are between 51 and 62 inches long. Jose picks all the ropes that are between 63 and 74 inches long. Lebron picks all the ropes that are 75 inches or longer. Part 1: Based on the data below, how many jump ropes does each person pick up? 3 ft 2 ft 5 ft 4 ft 4 ft 3 ft 7 ft 6 ft 6 ft 6 ft 3 ft 5 ft 5 ft 4 ft Part 2: Another bin is found. After students add the ropes below to their pile, how many do they each have? 6 ft 2 in 4 ft 3 in 2 ft 11 in 3 ft 4 in 3 ft 5 in 3 ft 11 in 6 ft 8 in 5 ft 11 in 5 ft 2 in 5 ft 3 in 3 ft 1 in 2 ft 3 in 3 ft 6 in 4 ft 2 in Part 3: Describe how you solved the tasks in Part Two. Level I Limited Performance Students make more than 2 errors. Rubric Level II Level III Not Yet Proficient Proficient in Performance Students make 1 or 2 The student provides correct answers. Part 1: errors OR their Sally: 4 ropes, Mary: 3 ropes, Tanya: 3 ropes, explanation in Part 3 is Jose: 2 ropes, Lebron: 1 rope. not accurate. Part 2: Sally: 4 ropes. Mary: 4 ropes, Tanya: 2 ropes, Jose: 3 ropes, Lebron: 1 rope. Part 3: Student discusses multiplying the number of feet by 12 and adding the number of inches. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks 1. 2. 3. 4. 5. 6. 7. 8. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Measuring the Jump Rope There are some jump ropes in a container in the gym. The students need to sort them by length. Sally picks all the ropes that are shorter than 40 inches. Mary picks all the ropes between 41 and 50 inches long. Tanya picks all the ropes that are between 51 and 62 inches long. Jose picks all the ropes that are between 63 and 74 inches long. Lebron picks all the ropes that are longer than 75 inches. Part 1: Based on the data below, how many jump ropes does each person pick up? 3 ft 7 ft 2 ft 6 ft 5 ft 6 ft 4 ft 6 ft 4 ft 3 ft 3 ft 5 ft 5 ft 4 ft Part 2: Another bin is found. After students add the ropes below to their pile, how many do they each have? 6 ft 2 in 4 ft 3 in 5 ft 11 in 5 ft 2 in 2 ft 11 in 3 ft 4 in 5 ft 3 in 3 ft 1 in 3 ft 5 in 2 ft 3 in 3 ft 11 in 6 ft 8 in 3 ft 6 in 4 ft 2 in Part 3: Describe how you solved the tasks in Part Two. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks How Long Did I Jump? 4.MD.1-Task 2 Domain Cluster Standard(s) Materials Measurement and Data Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. 4.MD.1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ... Paper and pencil How Long Did I Jump? At school three students are have a jumping competition to see who can jump the farthest. Miguel, Nancy, and Sarah both jump between 3 and 4 feet. Part 1: A. If Nancy jumps farther than Miguel but shorter than Sarah, what are possible distances that each person jumped in inches? B. If all 3 people jumped farther than 3 feet 6 inches, what are the possible distances that each person could have jumped in inches? C. If all 3 people jumped between 3 feet 7 inches and 3 feet 11 inches, how long did each person jump? Part 2: Write a sentence describing how you found the distances that each person jumped in inches. Rubric Level I Level II Level III Limited Performance Not Yet Proficient Proficient in Performance Students make Students make The student provides correct answers. Part 1: A- Distances more than 2 1 or 2 errors must be between 37 and 47 inches. Miguel must have the errors. OR their smallest distance, Nancy must have the 2nd longest, and explanation in Sarah must have the longest distance. B- Same as A, but the Part 3 is not distances must be between 43 and 47 inches. C- Miguel- 44 accurate. inches, Nancy- 45 inches, Sarah- 46 inches. AND there is a clear and accurate explanation about how they found the distances in inches. 1. 2. 3. 4. 5. 6. 7. 8. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks How Long Did I Jump? At school three students are have a jumping competition to see who can jump the farthest? Miguel, Nancy, and Sarah both jump between 3 and 4 feet. Part 1: A. If Nancy jumps farther than Miguel but shorter than Sarah, what are possible distances that each person jumped in inches? B. If all 3 people jumped farther than 3 feet 6 inches, what are the possible distances that each person could have jumped in inches? C. If all 3 people jumped between 3 feet 7 inches and 3 feet 11 inches, how long did each person jump? Part 2: Write a sentence describing how you found the distances that each person jumped in inches. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Baby Weights 4.MD.1-Task 3 Domain Cluster Standard(s) Materials Measurement and Data Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. 4.MD.1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ... Paper and pencil, activity sheet (attached) Baby Weights Using the table below, answer the following questions: Baby Samuel Nicole TJ Tyrette Gender Boy Girl Boy Girl Weight 7 and 2/4 pounds 7 and 7/8 pounds 1 and 3/4 pounds heavier than Samuel 1 and 4/8 of a pound heavier than Nicole Part 1: What is the weight of each baby in pounds? What is the weight of each baby in ounces? Part 2: How many pounds do the boys weigh? How many ounces do the boys weigh? How many pounds do the girls weigh? How many ounces do the girls weigh? Part 3: What was the total weight of all of the babies in pounds? What was the total weight of all of the babies in ounces? Part 4: Write a sentence about a strategy that you used to convert the babies’ weights from pounds to ounces. Rubric Level I Limited Performance Students make more than 2 errors. Level II Not Yet Proficient Students make 1 or 2 errors OR their explanation is not accurate. NC DEPARTMENT OF PUBLIC INSTRUCTION Level III Proficient in Performance Part 1: Samuel- 7 and 2/4 pounds, 120 ounces; Nicole- 7 and 7/8 pounds, 126 ounces; TJ- 9 and 1/4 pounds, 148 ounces; Tyrette- 9 and 3/8 pounds, 150 ounces Part 2: Boys- 16 and 3/4 pounds, 268 ounces; Girls- 17 and 2/8 or 17 and 1/4 pounds; 276 ounces. Part 3: Ounces: 34 pounds; 544 ounces Part 4: The sentence includes a logical and accurate approach of converting units. FOURTH GRADE Formative Instructional and Assessment Tasks 1. 2. 3. 4. 5. 6. 7. 8. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Baby Weights Using the table below, answer the following questions: Baby Gender Weight Samuel Boy 7 and 2/4 pounds Nicole Girl 7 and 7/8 pounds TJ Boy 1 and 3/4 pounds heavier than Samuel Tyrette Girl 1 and 4/8 of a pound heavier than Nicole Part 1: What is the weight of each baby in pounds? What is the weight of each baby in ounces? Part 2: How many pounds do the boys weigh? How many ounces do the boys weigh? How many pounds do the girls weigh? How many ounces do the girls weigh? Part 3: What was the total weight of all of the babies in pounds? What was the total weight of all of the babies in ounces? Part 4: Write a sentence about a strategy that you used to convert the babies’ weights from pounds to ounces. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Shipping Packages 4.MD.1-Task 4 Domain Cluster Standard(s) Materials Measurement and Data Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. 4.MD.1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ... Paper and pencil, activity sheet (attached) Shipping Packages Four friends are each sending packages . Use the table below to answer the following questions: Package Sarah’s box Karen’s box Tim’s box Steve’s box Weight 25 and 6/8 pounds 24 and 5/8 pounds 29 and 7/8 pounds 24 and 2/8 pounds Part 1: What is the weight of each person’s box in ounces? Part 2: What is the combined weight of each person’s box in pounds? What is the combined weight of each person’s box in ounces? Part 3: Boxes cost a flat rate of $10 if they are between 300 and 400 ounces, and $15 if they are between 400 and 500 ounces. How much does each package cost? Part 4: If Sarah has 3 boxes that weigh the same amount and Steve has 4 boxes that weigh the same amount, how much do all of those boxes weigh in pounds? Write a sentence explaining how you found your answer. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Rubric Level I Level II Level III Limited Performance Not Yet Proficient Proficient in Performance Students make more Students make 1 or 2 errors Part 1: Sarah: 412 ounces; Karen: 394 than 2 errors. OR their explanation is not ounces; Tim: 478 ounces; Steve: 388 ounces. accurate. Part 2: 104 and 4/8 pounds; 1,672 ounces Part 3: Karen and Steve will have to pay $10. Sarah and Tim will have to pay $15. Part 4: Sarah’s 3 boxes would weigh 77 and 1/4 pounds. Tim’s 4 boxes would weigh 119 and 2/4 pounds. The combined weight would be 196 and 3/4 pounds. 1. 2. 3. 4. 5. 6. 7. 8. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Shipping Packages Four friends are each sending packages . Use the table below to answer the following questions: Package Sarah’s box Precious’ box Tim’s box Steve’s box Weight 25 and 6/8 pounds 24 and 5/8 pounds 29 and 7/8 pounds 24 and 2/8 pounds Part 1: What is the weight of each person’s box in ounces? Part 2: What is the combined weight of each person’s box in pounds? What is the combined weight of each person’s box in ounces? Part 3: Boxes cost a flat rate of $10 if they are between 300 and 400 ounces, and $15 if they are between 400 and 500 ounces. How much does each package cost? Part 4: If Sarah has 3 boxes that weigh the same amount and Steve has 4 boxes that weigh the same amount, how much do all of those boxes weigh in pounds? How much do all of the boxes weigh in ounces? Write a sentence explaining how you found your answer. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Relay Running 4.MD.1-Task 5 Domain Cluster Standard(s) Materials Measurement and Data Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. 4.MD.1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ... Paper and pencil, activity sheet (attached) Relay Running The following runners are on the same relay team for the 4,000 meter race. Here are their times: Runner Time Alberto 2 minutes and 55 seconds Kate 3 minutes and 8 seconds Kelly 3 minutes and 17 seconds Matt 2 minutes and 58 seconds Part 1: What was the time of each runner in terms of only seconds? Part 2: Write a sentence explaining how you solved the questions in Part 1. Rubric Level I Level II Level III Limited Performance Not Yet Proficient Proficient in Performance Students make more Students make 1 or 2 errors Part 1: Albert-175 seconds, Kate-188 than 2 errors. OR their explanation is not seconds, Kelly-197 seconds, Matt-178 accurate. seconds Part 2: The sentence shows an appropriate way of solving the problems in Part 1. 1. 2. 3. 4. 5. 6. 7. 8. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Relay Running The following runners are on the same relay team for the 4,000 meter race. Here are their times: Runner Alberto Kate Kelly Matt Time 2 minutes and 55 seconds 3 minutes and 8 seconds 3 minutes and 17 seconds 2 minutes and 58 seconds Part 1: What was the time of each runner in terms of only seconds? Part 2: Write a sentence explaining how you solved the questions in Part 1. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Off to the Races 4.MD.1-Task 6 Domain Cluster Standard(s) Materials Measurement and Data Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. 4.MD.1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ... Paper and pencil, activity sheet (attached) Off to the Races The following runners just completed the Seaside Marathon race where they ran 26.2 miles. Runner Time Angela 3 hours, 25 minutes, 15 seconds Paul 3 hours, 26 minutes, 30 seconds Sandy 3 hours, 41 minutes, 45 seconds Jason 3 hours, 39 minutes, 15 seconds Part 1: What was the time of each runner in terms of only minutes and seconds (e.g., 185 minutes and 15 seconds)? Part 2: Write a sentence explaining how you solved the questions in Part 1. Rubric Level I Level II Level III Limited Performance Not Yet Proficient Proficient in Performance Students make more Students make 1 or 2 errors Part 1: Angela: 205 min, 15 sec; Paul: 206 than 2 errors. OR their explanation is not min, 30 sec; Sandy: 221 min, 45 sec; Jason: accurate. 219 min, 15 sec Part 2: The sentence shows an appropriate way of solving the problems in Part 1. 1. 2. 3. 4. 5. 6. 7. 8. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Off to the Races The following runners just completed the Seaside Marathon race where they ran 26.2 miles. Runner Angela Paul Sandy Jason Time 3 hours, 25 minutes, 15 seconds 3 hours, 26 minutes, 30 seconds 3 hours, 41 minutes, 45 seconds 3 hours, 39 minutes, 15 seconds Part 1: What was the time of each runner in terms of only minutes and seconds (e.g., 185 minutes and 15 seconds)? Part 2: Write a sentence explaining how you solved the questions in Part 1. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Mapping My Run 4.MD.1-Task 7 Domain Cluster Standard(s) Materials Measurement and Data Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. 4.MD.1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ... Paper and pencil, activity sheet (attached) Mapping A Run On her iPhone Molly was able to track how far she ran each day this week. Here are her distances. Day Monday Tuesday Wednesday Thursday Distance 5 km, 430 m, 0 cm 4 km, 789 m, 98 cm 6 km, 967 m, 56 cm 5 km, 5 m, 5 cm Part 1: How long did Molly run on each of the days in terms of meters (e.g., 6,425 meters and 38 centimeters)? Part 2: Write a sentence explaining how you found out the distance that she ran. Rubric Level I Level II Level III Limited Performance Not Yet Proficient Proficient in Performance Students make more Students make 1 or 2 errors Part 1: Monday: 5,430 m and 0 cm; Tuesday: than 2 errors. OR their explanation is not 4,789 m and 98 cm; Wednesday: 6,967 m accurate. and 56 cm; Thursday: 5,005 m and 5 cm. Part 2: The sentence is logical and accurate. 1. 2. 3. 4. 5. 6. 7. 8. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Mapping A Run On her iPhone Molly was able to track how far she ran each day this week. Here are her distances. Day Monday Tuesday Wednesday Thursday Distance 5 km, 430 m, 0 cm 4 km, 789 m, 98 cm 6 km, 967 m, 56 cm 5 km, 5 m, 5 cm Part 1: How long did Molly run on each of the days in terms of meters (e.g., 6,425 meters and 38 centimeters)? Part 2: Write a sentence explaining how you found out the distance that she ran. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Filling the Jugs 4.MD.1-Task 8 Domain Cluster Standard(s) Materials Measurement and Data Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. 4.MD.1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ... Paper and pencil, activity sheet (attached) Filling the Jug For a class project there was a large 10 Liter jug that had to be filled with water. Unfortunately, the class only had a container marked in milliliters. Part 1: Complete the table below. Amount in the jug Amount in Milliliters 1 Liter 1 Liter and 250 mL 1 Liter and 750 mL 2 Liters 2 Liters and 400 mL 2 Liters and 756 mL 3 Liters Part 2: Write a sentence to explain how you found the answer to one of the rows of the table. Rubric Level I Level II Level III Limited Performance Not Yet Proficient Proficient in Performance Students make more Students make 1 or 2 errors Part 1: 1 L = 1,000 mL; 1 L, 250 mL; 1,250 than 2 errors. OR their explanation is not mL; 1L, 750 mL= 1,750 mL; 2 L = 2,000 accurate. mL; 2L, 400 mL = 2,400 mL; 2L, 756 mL; 2,756 mL; 3L = 3,000 mL Part 2: The sentence is logical and accurate. 1. 2. 3. 4. 5. 6. 7. 8. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Filling the Jug For a class project there was a large 10 Liter jug that had to be filled with water. Unfortunately, the class only had a container marked in milliliters. Part 1: Complete the table below. Amount in the jug Amount in Milliliters 1 Liter 1 Liter and 250 mL 1 Liter and 750 mL 2 Liters 2 Liters and 400 mL 2 Liters and 756 mL 3 Liters Part 2: Write a sentence to explain how you found the answer to one of the rows of the table. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Making Punch 4.MD.1-Task 9 Domain Cluster Standard(s) Materials Measurement and Data Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. 4.MD.1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ... Paper and pencil, activity sheet (attached) Making Punch For a party Mrs. Laney is making punch. She filled a few different large punch bowls. Part 1: Complete the table below. Punch Bowl Amount in Milliliters 2 Liters and 5 milliliters 2 Liters and 50 milliliters 2 Liters and 500 milliliters 3 Liters and 8 milliliters 3 Liters and 80 milliliters 3 Liters and 800 milliliters Part 2: Write a sentence to explain how you found the answer to one of the rows of the table. Rubric Level I Level II Level III Limited Performance Not Yet Proficient Proficient in Performance Students make more Students make 1 or 2 errors Part 1: 2 L, 5 mL = 2,005 mL; 2L, 50 mL = than 2 errors. OR their explanation is not 2,050 mL; 2L, 500 mL = 2,500 mL; 3 L, 8 accurate. mL = 3,008 mL; 3L, 80 mL = 3,080 mL; 3 L, 800 mL = 3,800 mL Part 2: The explanation contains an accurate explanation. 1. 2. 3. 4. 5. 6. 7. 8. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Making Punch For a party Mrs. Laney is making punch. She filled a few different large punch bowls. Part 1: Complete the table below. Punch Bowl Amount in Milliliters 2 Liters and 5 milliliters 2 Liters and 50 milliliters 2 Liters and 500 milliliters 3 Liters and 8 milliliters 3 Liters and 80 milliliters 3 Liters and 800 milliliters Part 2: Write a sentence to explain how you found the answer to one of the rows of the table. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Weighing the Books 4.MD.2-Task 1 Domain Cluster Standard(s) Materials Measurement and Data Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. 4.MD.2 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. Paper and pencil Weighing the Books Mrs. Floyd and her classmates want to know how heavy a few of the books in their classroom are. Part 1: They want to know the masses of the objects in ounces; however the scale only gives the mass in pounds. Using the table below, find out how many ounces each book is. Math book 2 1/2 pounds Science book 3 1/3 pounds Dictionary 5 1/8 pounds Part 2: Two copies of one book and two copies of another book weigh a total of 6 pounds. Each book weighs a whole number of ounces. How many ounces could each book weigh? Explain how you solved this problem. Rubric Level I Level II Level III Limited Performance Not Yet Proficient Proficient in Performance Students make more Students make 1 or 2 errors Part 1: Math: 40 ounces, Science: 53 1/3 than 2 errors. OR their explanation is not ounces, Dictionary: 82 ounces. accurate. Part 2: The books should have a combined weight of 48 ounces, since 2 copies of both books will be 6 pounds or 96 ounces. AND there is a clear and accurate explanation about how they found the distances in inches. 1. 2. 3. 4. 5. 6. 7. 8. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Weighing the Books Mrs. Floyd and her classmates want to know how heavy a few of the books in their classroom are. Part 1: They want to know the masses of the objects in ounces, however the scale only gives the mass in pounds. Using the table below, find out how many ounces each book is. Math book 2 1/2 pounds _______oz Science book 3 1/3 pounds _______oz Dictionary 5 1/8 pounds _______oz Part 2: Two copies of one book and two copies of another book weigh a total of 6 pounds. Each book weighs a whole number of ounces. How many ounces could each book weigh? Explain how you solved this problem. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Getting Ready for School 4.MD.2-Task 2 Domain Cluster Standard(s) Materials Measurement and Data Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. 4.MD.2 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. Paper and pencil Getting Ready for School The bus comes to Steve’s house at 8:15 a.m. Prior to getting on the bus, he needs to: Eat breakfast: 15 minutes Shower: 8 minutes Get dressed: 7 minutes Read a book: 12 minutes Part 1: What is the latest that Steve can get up and still be on time for the bus? Part 2: It takes Steve’s sister, Rachel, twice as long to get dressed and 5 minutes longer to eat breakfast. What is the latest Rachel can get up and still be on time for the bus? Write a sentence to explain how you found your answer. Rubric Level I Level II Level III Limited Performance Not Yet Proficient Proficient in Performance Students make more Students make 1 or 2 errors Part 1: Steve needs to be up by 7:33 a.m. than 2 errors. OR their explanation in Part 2: Rachel needs to be up by 7:21 a.m. Part 3 is not accurate. AND the explanation is clear and accurate. 1. 2. 3. 4. 5. 6. 7. 8. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Getting Ready for School The bus comes to Steve’s house at 8:15 a.m. Prior to getting on the bus, he needs to: Eat breakfast: 15 minutes Shower: 8 minutes Get dressed: 7 minutes Read a book: 12 minutes Part 1: What is the latest that Steve can get up and still be on time for the bus? Part 2: It takes Steve’s sister, Rachel, twice as long to get dressed and 5 minutes longer to eat breakfast. What is the latest Rachel can get up and still be on time for the bus? Write a sentence to explain how you found your answer. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Adding Up and Comparing Our Jumps 4.MD.2-Task 3 Domain Cluster Standard(s) Materials Measurement and Data Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. 4.MD.2 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. Paper and pencil Adding Up and Comparing Our Jumps At school three students are have a jumping competition to see who can jump the farthest. Part 1: Nancy jumped 3 feet and 11 inches. Miguel jumped 5 inches longer than Nancy. Sarah jumped 9 inches longer than Miguel. How long did each person jump in feet and inches (e.g., 4 feet and 3 inches)? How long did each person jump in only inches? Part 2: Write a sentence describing how you found the distances that each person jumped in inches. Part 3: What was the combined length that all three students jumped in inches? What was their distance in feet and inches? Part 4: Three other students jumped a combined distance of 15 feet. How much further did they jump compared to the combined distance of Nancy, Miguel, and Sarah? Rubric Level I Level II Level III Limited Performance Not Yet Proficient Proficient in Performance Students make more Students make 1 or 2 errors Part 1: Nancy: 3 ft, 11 in or 47 in; Miguel: 4 than 2 errors. OR their explanation is not ft, 4 in or 52 in; Sarah: 5 ft, 1 in or 61 in. accurate. Part 2: The sentence contains a logical and accurate description. Part 3: 160 inches or 13 ft 4 in. Part 4: The other students jumped 1 ft and 8 inches further. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks 1. 2. 3. 4. 5. 6. 7. 8. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Adding Up and Comparing Our Jumps At school three students are have a jumping competition to see who can jump the farthest. Part 1: Nancy jumped 3 feet and 11 inches. Miguel jumped 5 inches longer than Nancy. Sarah jumped 9 inches longer than Miguel. How long did each person jump in feet and inches (e.g., 4 feet and 3 inches)? How long did each person jump in only inches? Part 2: Write a sentence describing how you found the distances that each person jumped in inches. Part 3: What was the combined length that all three students jumped in inches? What was their distance in feet and inches? Part 4: Three other students jumped a combined distance of 15 feet. How much further did they jump compared to the combined distance of Nancy, Miguel, and Sarah? NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Adding Up and Comparing Our Jumps II 4.MD.2-Task 4 Domain Cluster Standard(s) Materials Measurement and Data Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. 4.MD.2 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. Paper and pencil Adding Up and Comparing Our Jumps II At school three students are have a jumping competition to see who can jump the farthest. Part 1: Timothy jumped 3 feet and 10 inches. Yani jumped 4 inches longer than Timothy. Mitch jumped 11 inches longer than Yani. How long did each person jump in feet and inches (e.g., 4 feet and 3 inches)? How long did each person jump in only inches? Part 2: Write a sentence describing how you found the distances that each person jumped in inches. Part 3: What was the combined length that all three students jumped in inches? What was their distance in feet and inches? Part 4: Three other students jumped a combined distance of 14 feet. How much further did they jump compared to the combined distance of Timothy, Yani, and Mitch? NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Rubric Level I Level II Limited Performance Not Yet Proficient Students make Students make 1 or 2 more than 2 errors OR their errors. explanation is not accurate. 1. 2. 3. 4. 5. 6. 7. 8. Level III Proficient in Performance Part 1: Timothy- 3 feet 10 inches or 46 inches; Yani- 4 ft and 2 inches or 50 inches; Mitch- 5 ft 1 inch or 61 inches Part 2: The sentence accurately describes an appropriate process to find out each distance in inches. Part 3: The combined distance was 157 inches or 13 feet 1 inch. Part 4: The three other students jumped 11 inches farther than Timothy, Yani, and Mitch. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Adding Up and Comparing Our Jumps II At school three students are have a jumping competition to see who can jump the farthest. Part 1: Timothy jumped 3 feet and 10 inches. Yani jumped 4 inches longer than Timothy. Mitch jumped 11 inches longer than Yani. How long did each person jump in feet and inches (e.g., 4 feet and 3 inches)? How long did each person jump in only inches? Part 2: Write a sentence describing how you found the distances that each person jumped in inches. Part 3: What was the combined length that all three students jumped in inches? What was their distance in feet and inches? Part 4: Three other students jumped a combined distance of 14 feet. How much further did they jump compared to the combined distance of Timothy, Yani, and Mitch? NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Area & Perimeter Exploration 4.MD.3-Task 1 Domain Cluster Standard(s) Materials Task Measurement and Data Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. 4.MD.3 Apply the area and perimeter formulas for rectangles in real world and mathematical problems. Paper and pencil, graph paper or square tiles Examining the relationship between area and perimeter and using area and perimeter formulas for quick calculation. Activity 1: Create all the possible arrays with an area of 36 square units. Draw them on grid paper and label their dimensions. How can you be sure that you found all the possible arrays with an area of 36 square units? Find the perimeter for each figure. What do you notice about the shapes and their perimeters? What is the relationship between the perimeter and the shape of an array? Activity 2: Create all the possible arrays with a perimeter of 36 units. Draw your arrays on grid paper and label their dimensions. Use a chart to keep track of the area and dimensions for each rectangle. How can you be sure that you found all the possible arrays with a perimeter of 36 units? What do you notice about the shapes and their perimeters? What is the relationship between the area and the shape of an array? Activity 3: What generalizations can be made about the relationship between the area and perimeter of a figure? How could this this information be used to solve a problem in real life? When might it be useful to have this information? Possible Solution: Activity 1: All have area of 36 square units. Perimeter dimensions 74 units 1 x 36 40 units 2 x 18 30 units 3 x 12 26 units 4x9 24 units 6x6 Possible conclusions: The closer a shape gets to being a square, the smaller its perimeter. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Activity 2: All have a perimeter of 36 units. Area dimensions 17 1 x 17 32 2 x 16 45 3 x 15 56 4 x 14 65 5 x 13 72 6 x 12 77 7 x 11 80 8 x 10 81 9x9 Possible response: The closer a shape gets to being a square, the larger its area. Squares have the largest possible area and the smallest possible perimeter. Rubric Level I Level II Limited Performance Not Yet Proficient The student is unable to find The student is able to find all all the possible figures with an the possible arrays, areas, and area of 36 and/or calculate the perimeters for Activity 1 and perimeter for each figure. The Activity 2. They are unable to student is unable to find all the make generalizations about the possible arrays with a relationship between area and perimeter of 36 and/or their perimeters of squares and areas. The student does not rectangles. They are unable to have an efficient strategy to generate an example of how check to make sure that s/he this relationship might be has found all the possible useful in solving a real world arrays that fit the requirements. problem. They are unable apply the formula for area or perimeter to perform the required calculations. 1. 2. 3. 4. 5. 6. 7. 8. Level III Proficient in Performance The student is able to find all the possible arrays, areas, and perimeters for Activity 1 and Activity 2. They are able to make generalizations about the relationship between area and perimeters of squares and rectangles, and to generate at least one example of how this relationship might be useful in solving a real world problem. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Area & Perimeter Exploration Activity 1: Create all the possible arrays with an area of 36 square units. Draw them on grid paper and label their dimensions. How can you be sure that you found all the possible arrays with an area of 36 square units? Find the perimeter for each figure. What do you notice about the shapes and their perimeters? What is the relationship between the perimeter and the shape of an array? Activity 2: Create all the possible arrays with a perimeter of 36 units. Draw your arrays on grid paper and label their dimensions. Use a chart to keep track of the area and dimensions for each rectangle. How can you be sure that you found all the possible arrays with a perimeter of 36 units? What do you notice about the shapes and their perimeters? What is the relationship between the area and the shape of an array? Activity 3: What generalizations can be made about the relationship between the area and perimeter of a figure? How could this this information be used to solve a problem in real life? When might it be useful to have this information? NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Putting Down Carpet 4.MD.3 - Task 2 Domain Cluster Standard(s) Materials Measurement and Data Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. 4.MD.3 Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor. Plastic square tiles, Paper, Pencil, Graph paper (optional) Putting Down Carpet Part 1: You want to carpet 3 rooms of a house. Using the dimensions below, determine how much carpet is needed. Room 1: Perimeter is 38 yards and the width of the room is 12 yards. Room 2: Perimeter is 50 yards and the width is 13 yards. Room 3: Perimeter is 46 yards and the width is 10 yards. For each room, determine how much carpet is needed. Part 2: Write a sentence and explain how you solved this task. Rubric Level I Level II Level III Limited Performance Not Yet Proficient Proficient in Performance Students make more Students make 1 or 2 errors Part 1: Room 1: Width is 12, Length is 7. than 2 errors. OR their explanation is not Area is 84 square yards. Room 2: Width is accurate. 13 yards, Length is 12 yards. Area is 156 square yards. Room 3: Width is 10, Length is 13. Area is 130 square yards. Part 2: The explanation is clear and accurate. 1. 2. 3. 4. 5. 6. 7. 8. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Putting Down Carpet Part 1: You want to carpet 3 rooms of a house. Using the dimensions below, determine how much carpet is needed. Room 1: Perimeter is 38 yards and the width of the room is 12 yards. Room 2: Perimeter is 50 yards and the width is 13 yards. Room 3: Perimeter is 46 yards and the width is 10 yards. For each room, determine how much carpet is needed. Part 2: Write a sentence and explain how you solved this task. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Fencing Yards 4.MD.3 - Task 3 Domain Cluster Standard(s) Materials Measurement and Data Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. 4.MD.3 Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor. Plastic square tiles, Paper, Pencil, Graph paper (optional) Fencing Yards Part 1: For a summer job, your older brother is working for a fencing company. Determine how much fencing is needed for each of these rectangular yards. Yard 1: Area is 500 square meters. Length is 25 meters. Yard 2: Area is 567 square meters. Length is 9 meters. Yard 3: Area is 736 square meters. Length is 4 meters. Part 2: Write a sentence and explain how you solved this task. Rubric Level I Level II Level III Limited Performance Not Yet Proficient Proficient in Performance Students make more Students make 1 or 2 errors Part 1: Yard 1: Width is 20 meters. Fencing: than 2 errors. OR their explanation is not 90 meters. Yard 2: Width is 63 meters. accurate. Fencing: 144 meters. Yard 3: Width is 184 meters. Fencing is 376 meters. Part 2: The explanation is clear and accurate. 1. 2. 3. 4. 5. 6. 7. 8. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Fencing Yards Part 1: For a summer job, your older brother is working for a fencing company. Determine how much fencing is needed for each of these rectangular yards. Yard 1: Area is 500 square meters. Length is 25 meters. Yard 2: Area is 567 square meters. Length is 9 meters. Yard 3: Area is 736 square meters. Length is 4 meters. Part 2: Write a sentence and explain how you solved this task. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Making a Dog Pen 4.MD.3 - Task 4 Domain Cluster Standard(s) Materials Measurement and Data Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. 4.MD.3 Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor. Plastic square tiles, Paper, Pencil, Graph paper (optional) Making a Dog Pen Part 1: You want to make a rectangular dog pen using 20 yards of fencing. The side lengths must be in whole yards. Create as many different rectangular pens as you can. Part 2: Which dog pen gives your dog the most space to run around and play in? Write a sentence explaining how you know. Part 3: You want to build the rectangular dog pen with 20 yards of fencing against your house which is 20 yards wide. Which dimensions will give you the most space for your dog? Rubric Level I Level II Level III Limited Performance Not Yet Proficient Proficient in Performance Students make more Students make 1 or 2 Part 1: The dimensions must add up to 10. 9x1, than 2 errors. errors OR their 8x2, 7x3, 6x4, 5x5. explanation is not Part 2: The 5x5 pen gives the most space, 25 accurate. square yards. AND the explanation is clear and accurate. Part 3: The 10x5 rectangle gives the most space. The 10 yard side runs parallel to the house while the 5 yard sides connect the house to the other side. 1. 2. 3. 4. 5. 6. 7. 8. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Making a Dog Pen Part 1: You want to make a rectangular dog pen using 20 yards of fencing. The side lengths must be in whole yards. Create as many different rectangular pens as you can. Part 2: Which dog pen gives your dog the most space to run around and play in? Write a sentence explaining how you know. Part 3: You want to build the rectangular dog pen with 20 yards of fencing against your house which is 20 yards wide. Which dimensions will give you the most space for your dog? NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Reading Survey 4.MD.4 - Task 1 Domain Cluster Standard(s) Materials Task Measurement and Data Represent and interpret data. 3.MD.4 Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units— whole numbers, halves, or quarters. Paper, pencils, white boards and dry-erase markers (optional) Directions for students: As a class, have students survey 10 classmates and ask them “How long do you think fourth graders should read each night at home?” They can choose ¼, ½, ¾ or 1 hour. Students should record results on a piece of paper. Create a line plot to represent the data. Have students write a sentence about an observation that they notice from the line plot. If you were using this line plot to make a decision about how long students should read each night, which time would you choose? Why? Level I Limited Performance Incorrect answer and work are given. 1. 2. 3. 4. 5. 6. 7. 8. Rubric Level II Not Yet Proficient Finds the correct answer, but there may be inaccuracies or incomplete justification of solution OR Uses partially correct work but does not have a correct solution. Level III Proficient in Performance Accurately surveys and makes a line plot, and analyses the results. Uses an appropriate model to represent and justify the solution. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks How High Did it Bounce? 4.MD.4-Task 2 Domain Cluster Standard(s) Materials Measurement and Data Represent and interpret data. 4.MD.4 Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection. Paper, pencil, Activity sheet How High Did it Bounce? A class measures how high a bouncy ball will bounce compared to the height of the wall. Based on the data, make a line plot to display the data. 3/8 6/8 5/8 5/8 5/8 7/8 7/8 4/8 5/8 6/8 4/8 6/8 5/8 2/8 4/8 6/8 6/8 5/8 A) How many bouncy balls went halfway up the wall or higher? B) How may bouncy balls went 3/4 of the wall or higher? C) What is the combined height of all of the heights of the bouncy balls? Rubric Level I Level II Level III Limited Performance Not Yet Proficient Proficient in Performance Students make more Students make 1 or 2 errors A) 16 balls, B) 7 balls, C) 11 and 3/8 of the than 2 errors. wall or 91 feet high. 1. 2. 3. 4. 5. 6. 7. 8. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks How High Did it Bounce? A class measures how high a bouncy ball will bounce compared to the height of the wall. Based on the data, make a line plot to display the data. 3/8 6/8 5/8 0 1/8 5/8 5/8 7/8 2/8 7/8 4/8 5/8 3/8 6/8 4/8 6/8 4/8 5/8 2/8 4/8 5/8 6/8 6/8 6/8 5/8 7/8 1 A) How many bouncy balls went halfway up the wall or higher? B) How may bouncy balls went 3/4 of the wall or higher? C) If the wall is 8 feet high, what is the combined height of all of the heights of the bouncy balls? NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Measuring Strings 4.MD.4-Task 3 Domain Cluster Standard(s) Materials Measurement and Data Represent and interpret data. 4.MD.4 Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection. Paper, pencil, Activity sheet Measuring Strings A basket of strings is measured by the class and graphed. Based on the line plot: 1) How many strings are ½ of a foot or longer? 2) How many strings are shorter than 3/8 of a foot? 3) If students put the string together that is 1/8 or 2/8 of a foot long, how long would that string be? 4) If students put all of the pieces of string together, how long would that string be? Rubric Level I Level II Level III Limited Performance Not Yet Proficient Proficient in Performance Students make more Students make 1 or 2 errors 1) 7. 2) 6, 3) 9/8 or 1 and 1/8, 4) 8 and 6/8 than 2 errors. or 8 and 3/4 1. 2. 3. 4. 5. 6. 7. 8. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Measuring Strings A basket of strings is measured by the class and graphed. Lengths of string (feet) 0 x x x 1/8 x x x 2/8 x x 3/8 x x x 4/8 x x 5/8 x x 6/8 x X X 7/8 1 Based on the line plot: 1) How many strings are more than ½ of a foot or longer? 2) How many strings are shorter than 3/8 of a foot? 3) If students put the string together that is 1/8 or 2/8 of a foot long, how long would that string be? 4) If students put all of the pieces of string together, how long would that string be? NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Intersecting Roads 4.MD.5 – Task 1 Domain Cluster Standard(s) Materials Task Measurement and Data Geometric measurement: understand concepts of angle and measure angles. 4.MD.5 Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement: a. An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through 1/360 of a circle is called a “onedegree angle,” and can be used to measure angles. b. An angle that turns through n one-degree angles is said to have an angle measure of n degrees. 4.MD.6 Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure. Task handout, Protractor (optional) Intersecting Roads Circle-town is shaped like a circle. All of the roads start in the center of the town and extend from the center like rays. Part 1: On the map draw the following roads and label the measure of each angle. a) Smith Street extends completely horizontal to the right of the center of town. b) Smith Street and Main Street form a 45 degree angle. c) Thompson Street forms a 30 degree angle with Main Street. d) Young Avenue forms a 90 degree angle with Thompson Street. e) Turnberry forms a 120 degree angle with Young Avenue. Part 2: Write an explanation about how you know your answers are correct in Part 1. Rubric Level I Limited Performance The student is unable to use strategies to find correct answers to any aspect of the task. 1. 2. 3. 4. 5. 6. 7. 8. a) Level II Not Yet Proficient The student has between 1 and 2 errors. Level III Proficient in Performance The answers are correct. Part 1: Roads are drawn correctly and angles are correctly labeled. Part 2: The explanation is clear and accurate. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Intersecting Roads Circle-town is shaped like a circle. All of the roads start in the center of the town and extend from the center like rays. Part 1: On the map draw the following roads and label the measure of each angle. a) Smith Street extends completely horizontal to the right of the center of town. b) Smith Street and Main Street form a 45 degree angle. c) Thompson Street forms a 30 degree angle with Main Street. d) Young Avenue forms a 90 degree angle with Thompson Street. e) Turnberry forms a 120 degree angle with Young Avenue. Part 2: Write an explanation about how you know your answers are correct in Part 1. Extension: Create your own town and give direction as noted above. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Going Different Directions 4.MD.6 – Task 1 Domain Cluster Standard(s) Materials Task Measurement and Data Geometric measurement: understand concepts of angle and measure angles. 4.MD.6 Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure. 4.MD.5 Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement: a. An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through 1/360 of a circle is called a “onedegree angle,” and can be used to measure angles. b. An angle that turns through n one-degree angles is said to have an angle measure of n degrees. Task handout, Protractor (optional) Going Different Directions Pairs of students worked together to explore the idea of creating an angle. Part 1: Each student represents a point and each walk represents a ray. Draw the angle each situation below creates. a) Students stood back to back and walked away from each other; b) One student faced forward while the other student turned 30 degrees and both students walked forward; c) One student faced forward while the other student turned 90 degrees and both students walked forward; d) One student faced forward while the other student turned 120 degrees and both students walked forward. Part 2: Explain how you solved the tasks above. Rubric Level I Limited Performance The student is unable to use strategies to find correct answers to any aspect of the task. 1. 2. 3. 4. 5. 6. 7. 8. b) Level II Not Yet Proficient The student has between 1 and 2 errors. Level III Proficient in Performance The answers are correct. Part 1: Angles are drawn correctly. A is a 180 degree or straight angle. Part 2: The explanation is clear and accurate. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Going Different Directions Pairs of students worked together to explore the idea of creating an angle. Each student represents a point and each walk represents a ray. Draw the angle each situation below creates. Part 1: Draw each angle when: c) Students stood back to back and walked away from each other. d) One student faced forward while the other student turned 30 degrees and both students walked forward. e) One student faced forward while the other student turned 90 degrees and both students walked forward. f) One student faced forward while the other student turned 120 degrees and both students walked forward. Part 2: Explain how you solved the tasks above. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Making Shapes 4.MD.6 – Task 2 Domain Cluster Standard(s) Materials Task Measurement and Data Geometric measurement: understand concepts of angle and measure angles. 4.MD.6 Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure. 4.MD.5 Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement: a. An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through 1/360 of a circle is called a “one-degree angle,” and can be used to measure angles. b. An angle that turns through n one-degree angles is said to have an angle measure of n degrees. Task handout, Geoboard, Protractor Making Shapes Part 1: On the geoboard make the following shapes. Below, draw the shape and write the measurement of each angle. a) A rectangle b) A trapezoid c) A parallelogram that is not a rectangle d) A right triangle e) An isosceles triangle f) An obtuse triangle Part 2: Write an explanation describing how you measured each of the angles in the isosceles triangle. Rubric Level I Limited Performance The student is unable to use strategies to find correct answers to any aspect of the task. 1. 2. 3. 4. 5. 6. 7. 8. g) Level II Not Yet Proficient The student has between 1 and 2 errors. Level III Proficient in Performance The answers are correct. Part 1: The shapes are drawn correctly and angle measures are correctly labeled. Part 2: The explanation is clear and accurate. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Making Shapes Part 1: On the geoboard make the following shapes. Below, draw the shape and write the measurement of each angle. a) A rectangle b) A trapezoid c) A parallelogram that is not a rectangle d) A right triangle e) An isosceles triangle f) An obtuse triangle Part 2: Write an explanation describing how you measured each of the angles in the isosceles triangle. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Adding Up Angles 4.MD.7-Task 1 Domain Cluster Standard(s) Materials Measurement and Data Geometric measurement: understand concepts of angle and measure angles. 4.MD.7 Recognize angle measure as additive. When an angle is decomposed into nonoverlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure. Paper, pencil, Protractor Adding Up Angles A 90 degree angle is divided into two smaller angles. Part 1: What type of angles are both of the smaller angles? How do you know? Part 2: Give 3 possible combinations for the measurements of both angles. For each, draw the angles and write the angle measure. Rubric Level I Level II Level III Limited Performance Not Yet Proficient Proficient in Performance Students make more Students make 1 or 2 errors Part 1: Both angles have to be acute angles than 2 errors. OR the drawings are not since the sum of both is 90 degrees. close to the angle measure. Part 2: The sum of both angles has to be 90 degrees for all 3 answers AND the drawings are close to the angle measure. 1. 2. 3. 4. 5. 6. 7. 8. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks Adding Up Angles A 90 degree angle is divided into two smaller angles. Part 1: What type of angles are both of the smaller angles? How do you know? Part 2: Give 3 possible combinations for the measurements of both angles. For each, draw the angles and write the angle measure. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks How Can We Split Angles? 4.MD.7-Task 2 Domain Cluster Standard(s) Materials Measurement and Data Geometric measurement: understand concepts of angle and measure angles. 4.MD.7 Recognize angle measure as additive. When an angle is decomposed into nonoverlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure. Paper, pencil, Protractor How Can We Split Angles? Part 1: Use a protractor to split a 135 degree angle the following ways: A) A right angle, a 35 degree angle and another acute angle. What is the measure of the other angle? B) A right angle and another angle. What is the measure of the other angle? C) A 120 degree angle and another angle. What is the measure of the other angle? D) 3 angles that are the same size. E) A 15 degree angle and 2 angles that are the same size. What is the measure of the other angles? Part 2: Describe how you solved one of the tasks above. Rubric Level I Level II Level III Limited Performance Not Yet Proficient Proficient in Performance Students make more Students make 1 or 2 errors Part 1: A) The other angle is 10 degrees. B) than 2 errors. The other angle is 45 degrees. C) The other angle is 15 degrees. D) Each angle is 45 degrees. E) The other angles are each 60 degrees. Part 2: Description is clear and accurate. 1. 2. 3. 4. 5. 6. 7. 8. Standards for Mathematical Practice Makes sense and perseveres in solving problems. Reasons abstractly and quantitatively. Constructs viable arguments and critiques the reasoning of others. Models with mathematics. Uses appropriate tools strategically. Attends to precision. Looks for and makes use of structure. Looks for and expresses regularity in repeated reasoning. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE Formative Instructional and Assessment Tasks How Can We Split Angles? Part 1: Use a protractor to split a 135 degree angle the following ways: A) A right angle, a 35 degree angle and another acute angle. What is the measure of the other angle? B) A right angle and another angle. What is the measure of the other angle? C) A 120 degree angle and another angle. What is the measure of the other angle? D) 3 angles that are the same size. What is the measure of each of the angles? E) A 15 degree angle and 2 angles that are the same size. What is the measure of the other angles? Part 2: Describe how you solved one of the tasks above. NC DEPARTMENT OF PUBLIC INSTRUCTION FOURTH GRADE
© Copyright 2026 Paperzz