Materials for Energy Storage Yang-Kook Sun Energy Storage and Conversion Materials Lab. http://energy.ce.to/ (FTC 1017) (02)2220-0524, (017)335-4074 [email protected] • Grade Items Score Mild-term 100 Final-term 100 Attendance 30 Presentation 100 합계 330 Energy Storage & Conversion Material Laboratory - Text 1) LITHIUM BATTERIES Science and Technology, G.-A. Nazri and G. Pistoia Eds. Kluwer Academic Pub., 2004 2) Lithium Secondary Batteries, 박정기, 홍릉과학출판사, 2010 3) J. of Electrochem. Soc.: http://www.ecsdl.org/JES 4) J. of Power Sources: http://www.sciencedirect.com/science/journal/03787753 5) Electrochimica Acta: http://www.sciencedirect.com/science/journal/00134686 6) Nature Materials: http://www.nature.com/nmat/index.html 7) Energy & Environmental Science: http://pubs.rsc.org/en/journals/journalissues/ee 8) J. of Amer. Chem. Soc.: http://pubs.acs.org/journal/jacsat 9) Chem. Mater.: http://pubs.acs.org/journal/cmatex 10) J. of Phy. Chem. C: http://pubs.acs.org/journal/jpccck 11) Adv. Mater.: http://onlinelibrary.wiley.com/doi/10.1002/adma.v20:21/issuetoc 12) J. Mater. Chem.: http://pubs.rsc.org/en/journals/journalissues/jm 13) Angewandte Chemie: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)15213773 14) Adv. Ener. Mater.: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1614-6840 15) Electrochemistry Communications: http://www.sciencedirect.com/science/journal/13882481 16) Nat. Commun.: http://www.nature.com/ncomms/index.html 18) Nat. Chem.: http://www.nature.com/nchem/index.html 19) Nano Energ.: http://www.sciencedirect.com/science/journal/22112855 Electrochemical Concepts A battery is an electrochemical cell that converts the chemical energy of a reaction directly into electrical energy Chemical Energy Electrical Energy Electrochemical cells Anode : M Cathode : X + ne- Load Electrolyte Cathode X Separator XnMn+ + Xn- Overall : M + X e e Anode M Mn+ + ne- When a current of I amperes flows in the circuit for a time of t seconds, then the amount of charge Q transferred across any interface in the cell is equal to It coulombs. - Number of moles Nm of the reactants M or X consumed by the passage of It coulombs is given by Electrolyte Figure 1. Schematic of an electrochemical cell Nm = Q = It = 𝐼𝑡 𝑛𝑁𝐴 𝑒 = 𝐼𝑡 𝑛𝐹 where n; # of electrons given up or accepted by M or X nFNm : theoretical capacity Energy Storage & Conversion Material Laboratory Electrochemical Concepts 1F (faraday) = # of avogadro × charge of one electron = 6.023 × 1023 × 1.6 × 10−19 C = 96485 C /equivalent = 26.8 Ah/equivalent Thermodynamics of Electrochemical Cells - The driving force for an electrochemical cell to deliver electrical energy to an external circuit is the decrease in the standard free energy ∆Go of the cell reaction. Galvanic cell : ∆Go < 0 , Spontaneous reaction ∆Go = -nFEo, where N and F are, respectively, the # of electrons involved in the reaction - - and the Faraday constant. is the difference between electrode potential of the cathode and anode and the equilibrium potential when all of the cell component are in their standard states; a positive value of Eo means that the cell reaction occurs spontaneously. Nernst equation at standard state Eo 𝑬 = 𝑹𝑻 𝜽 𝑬 − 𝝂𝑭 𝑎𝑀 𝑛+𝑎𝑋𝑛𝒍𝒏 𝑎𝑀 𝑎𝑋 𝟎. 𝟎𝟓𝟗𝟏 𝑎𝑀 𝑛+𝑎𝑋𝑛𝑬 =𝑬 − 𝒍𝒏 𝒏 𝑎𝑀 𝑎𝑋 𝜽 Energy Storage & Conversion Material Laboratory Electrochemical Concepts Polarization Losses in Electrochemical Cells - When a current I is passed through the cell, part of energy is lost as waste heat due to polarization losses in the cell (three types); 1) activation polarization, 2) concentration polarization, and 3) ohmic polarization. Activation polarization is related to the kinetics of electrode reactions Concentration polarization is related to the concentration differences of the reactants and products at the electrode surfaces and in the bulk as a result of mass transfer Ohmic polarization, usually referred to as internal IR drop, is related to the internal impedance of the cell, which is sum of the ionic resistance of electrolyte and the electronic resistance of the electrodes Eoc Cell Voltage / V - Ohmic polarization Activation polarization Eop Concentration polarization Current / A Figure 2. Variation of cell voltage with operating current illustrating polarization losses Energy Storage & Conversion Material Laboratory OPERATING PARAMETERS in Batteries Capacity, Ah, is the total quantity of charge that the battery may deliver in discharge. Gravimetric Specific capacity, Ah/g, is the total quantity of charge that the battery may deliver in discharge per weight. Volumetric Capacity density, Ah/cm3, is the total quantity of charge that the battery may deliver in discharge per volume. Gravimetric Energy Density, Wh/kg, is the energy that the battery can deliver per weight. Volumetric Energy density Wh/cm3, is energy that the battery can deliver per volume. - The practical values, that include total weight or volume (electrodes, electrolyte, case, current collector, separators, etc) are usually 1/4 of the theoretical ones. For instance in the case of the lead acid battery, the theoretical value is 171 Wh/ kg while the practical value decreases to about 40 Wh/kg Energy Storage & Conversion Material Laboratory History of Batteries 1834 FARADAY Faraday law Energy Storage & Conversion Material Laboratory Table 1. Major Primary Battery systems Cell Voltage Capacity Battery Anode Cathode Cell Reaction (V) (Ah/Kg)a Leclanche Zn MnO2 Zn + 2MnO2 → ZnO∙Mn2O3 1.6 224 Magnesium Mg MnO2 Mg + 2MnO2 + H2O → Mn2O3 + Mg(OH)2 2.8 271 Alkaline MnO2 Zn MnO2 Zn + 2MnO2 → ZnO + MnO3 1.5 224 Mercury Zn HgO Zn + HgO → ZnO + Hg 1.34 190 Zinc-air Zn O2 Zn + 0.5O2 → ZnO 1.65 658 Li-SO2 Li SO2 2Li + 2SO2 → Li2S2O4 3.1 379 Li-MnO2 Li MnO2 Li + MnO2 → LiMnO2 3.1 286 a Based only on active cathode and anode materials Energy Storage & Conversion Material Laboratory History of Batteries 1990s~ 1980s~ 1970s~ Ni-Cd, 1973 · Lithium-ion Battery (3.6V) · Ni-MH Battery (1.2V) · Lithium Battery · Early 1970s: Nickel hydrogen battery · 1955: Common alkaline battery · 1903: Ni-Fe battery (EDISON) 1899 · Ni-Cd Battery (1.2V) · 1887: Zinc-carbon cell – the first dry cell · 1866: Leclanche Cell · 1860s: Gravity Cell 1859 · Lead-acid Cell: the first rechargeable battery (1.2V) · 1844: Grove Cell · 1836: Daniell Cell · 1800: Voltaic Pile Table 2. Major Secondary Battery Systems Anode Cathode Cell Reaction Cell Voltage (V) Capacity (Ah/kg)a Lend-acid Pb PbO2 Pb + PbO2 + 2H2SO4 → 2PbSO4 + 2H2O 2.1 120 Nickel-cadmium Cd NiOOH Cd + 2NiOOH + 2H2O → 2Ni(OH)2 + Cd(OH)2 1.35 181 Nickel-hydrogen H2 NiOOH H2 + 2NiOOH → 2Ni(OH)2 1.5 289 Nickel-metal hydride MH NiOOH MH + NiOOH → M + Ni(OH)2 1.35 206 Li Li0.5CoO2 0.5Li + Li0.5CoO2 → LiCoO2 3.7 137 Battery Lithium-ion a Based only on active cathode and anode materials. Energy Storage & Conversion Material Laboratory Gaston Planté and the lead-acid battery (1859): The first rechargeable system + v I/A PbO2 _ SO42- Pb 4 H+ PbSO4 H2 O - SO42- PbSO4 H2SO4 / H2O PbO2(s) + 4H+ + SO42- + 2e PbSO4(s) + 2H2O DE = 2,0 V Pb(s) + SO42 PbSO4 + 2e- ● Usable batteries for thermal vehicles ● Industrial batteries (network support, heavy traction) Its cost (100 €/kWh) Low energy and specific power (25-35 Wh/Kg; 60-120Wh/l) Reduced cyclability and calendar life, weak in temperature Reactions in the solid state: ● Breaking of chemical bonds at both electrodes Energy Storage & Conversion Material Laboratory W. Jungner (1909): The Ni-Cd batteries and its its derivatives Ni-Fe, Ni-Zn, and Ni-H2 v + Ni Ni(OH)2 Ni Ni _ DE = 1,2 V OH OH OH OH Cd OH OH Cd OH Cd OH OH OH OH OH OH - H+ H+ ( NiOOH OH Ni lamellaire) (Hydroxyde OH O OH Ni OH O OH Ni OH O ) H 2O Cd Cd Aqueous electrolyte (KOH) Ni(OH)2(s) + OH- NiOOH(s) + H2O + e- Long calendar life High power Good cycling behaviour Weak specific energy Important self-discharge Cadmium toxicity Cd(OH)2 Cd(OH)2(s) + 2e- Cd: 1.2 V Cd Fe; 1.4 V Zn: 1.7 V H2: 1.3 V Cd(s) + 2OH- Performances 45-60 Wh/kg 170 W/kg 2000 cycles 90 km/h, 90 km d’autonomie Energy Storage & Conversion Material Laboratory 1975: the Nickel-Metal hydride battery: Two insertion reactions v + Ni(OH)2 DE = 1,3 V OH OH OH Ni OH OH Ni OH Ni NiOOH H H H OHH+ OH Ni lamellaire) (Hydroxyde OH O OH Ni OH O OH Ni OH O _ H+ H 2O H H Aqueous electrolyte (KOH) Ni(OH)2(s) + OH- NiOOH(s) + H2O + e- High Volume energy (310 Wh/L) Good cyclability High power rate Cost of materials Energy density (80Wh/kg) MHx "LaNi5H6" + 6H+ + 6e- H M "LaNi5" M + xH2O + xe- MHx + xOH- Performances 80 Wh/kg 200-1350 W/kg 1000 cycles 1997, Toyota Prius Energy Storage & Conversion Material Laboratory How to increase the energy density of rechargeable Batteries ??? From H+ to Li+ Energy density (Wh/kg) = Capacity (Ah/kg) x V (volts) 3 1 1.0079 6.941 0.98 2.2 14.5 180.5 0.534 0.089 Li H 1s212s1 Lithium Hydrogen Requires aqueous media Limited to 1.2 V (Water stability) 1.0 (Volts) POTENTIAL 1.4 1.2 0.8 0.6 0.4 ENERGY ENERGY ENERG Y 0.2 0 Lightest metal (6.9 g) 3 0.98 180.5 0.534 6.941 Li 1s 1s22s11 Lithium Number of e- exchanged CAPACITY Most reducing metal - 3.04V vs. ENH Large energy densities Reacts with water Organic electrolytes Energy Storage & Conversion Material Laboratory Why Li-ion ? Comparison of Energy Density (Wh/kg) 300 LiB LiPB 200 Ni-MH Ni-Cd 100 Lead Acid 0 0 100 200 300 400 500 600 700 (Wh/L) Energy Storage & Conversion Material Laboratory Market for LIB Energy Storage & Conversion Material Laboratory Why Li-ion ? Market trend: Mobile IT → EV or ESS Market for LIBs LIBs Market for Auto Energy Storage & Conversion Material Laboratory LIBs Market for automobile Km – driving range GWh HEV-NiMH HEV-Li PHEV 500 450 400 350 300 250 200 150 100 50 - BEV 100 90 80 90% market of PHEV+BEV 70 60 50 40 KWh – battery 100 90 80 70 60 50 40 30 20 10 - Range(Km) Capa.(KWh) 30 20 Tesla 10 Based on the number of car HEVNiMH 36% Based on Energy HEV-Li 4% BEV 16% HEV-Li 31% PHEV 17% PHEV 33% Source : B3 Report HEV-NiMH 6% BEV 57% BMW GM Nissan Item NCM1/3 Ni-rich1) Capacity (mAh/g) 155~165 190~200 Electrode Density 3.0~3.3 3.2~3.6 Voltage (V) 3.65 3.6 Energy (Wh/cc) 1.99 2.72 Cycle Excellent middle Power Good Good (g/cc) 1) Ni-rich: Ni ≥80% NCA or NCM Development of Ni-rich cathode is indispensable !! Energy Storage & Conversion Material Laboratory LIB Energy Density History Gravimetric Energy Density (Wh/kg) Map of energy density for cylindrical LIB (18650) 2007 190 ? 2008 The 1st LIB was introduced in the market by SONY (1991) 2005 2003 2002 2001 170 2000 Typ.3000mAh Typ.3600mAh Typ.2800mAh Typ.2600mAh Typ.2400mAh Typ.2200mAh Typ.2000mAh 1998 Typ.1900mAh 150 For last 20yrs, energy density of LIB has been increased only 2~3times -. Higher voltage cut-off -. Metal alloy NE Typ.1700mAh Changing the negative material from H/G to Graphite 1996 130 1995 1994 Typ.1420mAh 98 → 185 Wh/kg 220 → 620 Wh/L Typ.1370mAh 110 Improving the high voltage stability of positive materials Typ.1250mAh Optimizing cell design to maximize the packing density Typ.860mAh (1st LIB by SONY) 90 200 300 400 500 600 700 800 900 Volumetric Energy Density(Wh/l) -3- Energy Storage & Conversion Material Laboratory Principle of Lithium Batteries Discharge Chem. Energy Electrical Energy Charge charge e- charger • e- discharge cathode discharge anode Li+ charge Oxygen Metal Atom Lithium Carbon - 16 - Energy Storage & Conversion Material Laboratory Charge Lithium-Ion Battery Electrolyte Cu Current AL Current Collector Collector Graphite LiMO2 SEI SEI Energy Storage & Conversion Material Laboratory Discharge Lithium-Ion Battery Electrolyte Cu Current AL Current Collector Collector Graphite LiMO2 SEI SEI Energy Storage & Conversion Material Laboratory Cost analysis of materials and battery Profit Others Ownership Labor Depreciation Others Case Electrolyte Anode Separator Material Battery cost Cathode Material cost Energy Storage & Conversion Material Laboratory Four Key Materials for Li-ion Batteries Materials Cathode Requirement ∙ LiCoO2 ∙ High Energy ∙ LiNiCoMnO2 ∙ Low Cost ∙ LiFePO4 ∙ Safety ∙ Li1+xNiCoMnO2 Anode ∙ Graphite ∙ High Energy ∙ Hard carbon / Soft carbon ∙ Low Cost ∙ Li4Ti5O12 ∙ Fast Charge ∙ Si, Sn, etc Separator ∙ PE / PP ∙ Low Thermal Shrinkage ∙ Nonwoven ∙ High Mechanical Strength ∙ Ceramic Coated ∙ Low Cost ∙ Organic Solvent Electrolyte (EC, EMC, DME, DEC, etc.) ∙ Li Salt ∙ Less Flammable ∙ Low Cost (LiPF6, LiBF4, LiBOB, etc.) Energy Storage & Conversion Material Laboratory Electrochemical Concepts Cell Voltage / V Eoc Ohmic polarization Activation polarization Eop Concentration polarization Current / A Energy Storage & Conversion Material Laboratory
© Copyright 2025 Paperzz