Power Electronic System Design I Winter 2010 Steven Trigno, Satya Nimmala, Romeen Rao Buck-Boost Converter Analysis iL - R Vc + Vg C L PWM iC Figure 1-Buck-boost circuit schematic implemented with practical switch When the transistor is turned ON, the diode is reverse-biased; therefore, not conducting (turned OFF) and the circuit schematic looks like as follows: 0 < t < DTs Transistor ON, Diode OFF + + Vg R Vc VL C L iC ig V _ iL Figure 2-Schematic of buck-boost converter when the switch is ON VL(t) = Vg – iL.RON ≈ Vg – iL.RON iC(t) = -v(t) / R ≈ −𝑉 𝑅 ig(t) = iL(t) ≈ IL When the transistor is OFF, the Diode is turned ON (DTs < t < Ts). The circuit is shown in fig 3: Transistor OFF, Diode ON + + Vg R Vc VL C L iC iL ig Figure 3 – Schematic Buck-boost converter when the switch is OFF VL(t) = -v(t) ≈ -V Ic(t) = 𝑖𝐿 (𝑡) − 𝑣(𝑡) 𝑅 𝑉 ≈ 𝐼𝐿 − 𝑅 Ig(t) = 0 volt.second balance: <VL(t)> = 0 = D(Vg - IL.RON) + D’(-V) charge balance: <ic(t)> = 0 = D(-V/R) + D’(IL – V/R) Average input current: <ig> = Ig = D(IL) + D’(0) Next, we construct the equivalent circuit for each loop equation: Inductor loop equation: V DVg - IL.DRon – D’V = <VL> = 0 _ IL DRon + _ DVg Capacitor node equation: + _ 𝐷′ 𝐼𝐿 − 𝑉 D’V = < 𝑖𝐶 > = 0 𝑅 + R V D’IL _ Input current (node) equation: Ig = D.IL _ D’IL Vg + Ig Then we draw the circuit models together as shown below: DRon IL _ Vg Ig + DIL + _ DVg D’V + _ + D’IL V _ 1:D transformer reversed polarity marks Model including ideal dc transformers: D’:1 transformer IL 1:D _ D’:1 Ig + R Vg + 𝑫 𝑽𝒈 𝑫′ 𝑹+ 𝑽= 𝑹 𝑽 𝑫 𝟏 → = 𝑫 𝑽𝒈 𝑫′ 𝟏 + 𝑫 𝑹𝒐𝒏 𝑹 (𝑫′)𝟐 𝒐𝒏 (𝑫′)𝟐 𝑹 𝟏 𝑫 𝑹 𝟏+ + 𝒐𝒏 𝑹 (𝑫′)𝟐 IL = V _ And for the efficiency (η): η= DRon 𝑽 𝑫′𝑹 Ploss = 𝑰𝟐𝑳 . 𝑫𝑹𝑶𝑵 Discontinuous Conduction Mode in Buck-Boost Converter iL _ + Vg PWM R V L C + - Figure 4-Buck-boost converter During D1Ts: iL _ + Vg L R V C + - Figure 5-Transistor ON, Diode OFF VL = Vg During D2Ts: iL _ + Vg VL L R V + - C Figure 6 - Transistor OFF, Diode ON VL = -V During D3Ts: iL _ + Vg VL L R V + - C Figure 7 - Transistor OFF, Diode OFF VL = 0 Boundary between modes: CCM: 𝑫𝑻𝒔𝑽𝒈 ∆𝒊 = (∆i = peak ripple in L) 𝟐𝑳 ∆𝑽 = 𝑫𝑻𝒔𝑽 (∆V = peak ripple in C) 𝟐𝑹𝑪 𝑽 IL = 𝑫′𝑹 (average inductor current) Boundary: 𝑰𝑳 > ∆𝑖 𝑓𝑜𝑟 𝐶𝐶𝑀 𝑰𝑳 < ∆𝑖 𝑓𝑜𝑟 𝐷𝐶𝑀 → 𝑽 𝑫′𝑹 𝟐𝑳 𝑫 𝑽= → 𝑫𝑻𝒔𝑽𝒈 > 𝑫′ 𝑫 𝑽𝒈 (𝑫′)𝟐 𝑹 𝟐𝑳 𝑹𝑻𝒔 𝑽𝒈 > in CCM 𝑫𝑻𝒔𝑽𝒈 𝟐𝑳 > (𝑫′)𝟐 Buck Boost Convertor DTS D’TS KVL -Vg + VL = 0 -VL + V = 0 VL = Vg VL = V KCL ic = −V ic = iL − VV VR R Inductor volt sec balance: < VL > = DVg + D′ V = 0 D′ V = -DVg V −D = Vg 1−D Capacitor Charge Balance: < ic > = D( −V V ′ VR ) + D (i − VR ) = −D V ′ ′ V VR + D i L − D VR = D′ iL − D V ′ V VR −D VR = D′ iL − V (D VR + D′) = D′ iL − V VR = 0 iL = 1 1−D V ( ) R State Space Analysis DTs: Apply KVL to fig.1. −𝑉𝑔 + 𝐿 𝑑𝑖 =0 𝑑𝑡 𝑑𝑖 𝑉𝑔 = 𝑑𝑡 𝐿 Apply KCL to fig.1. 𝐶 𝑑𝑖 𝑉 + =0 𝑑𝑡 𝑅 𝑑𝑣 𝑉 =− 𝑑𝑡 𝑅𝐶 𝑑 𝑖 [ ] 𝑑𝑡 𝑣 𝑑 𝑖 [ ] 𝑑𝑡 𝑣 1 0 −𝐿 𝑐 − 𝑅𝐶 = [1 1 1 𝑖 ] [ ] + [ 𝐿 ] 𝑉𝑔 𝑣 0 𝑖 = 𝐴1 [ ] + 𝐵1 𝑉𝑔 𝑣 → (1) → (2) By comparing the equation’s (1) and (2) we get values of 𝐴1 and 𝐵1 0 𝐴1 = [ 1 𝑐 1 𝐿 ] 1 − 𝑅𝐶 − 1 𝐵1 = [𝐿] 0 D’Ts: Apply KVL to fig.2. −𝐿 𝑑𝑖 +𝑉 = 0 𝑑𝑡 𝑑𝑖 𝑉 = 𝑑𝑡 𝐿 Apply KCL to fig.2. 𝑖+𝐶 𝑑𝑣 𝑉 + =0 𝑑𝑡 𝑅 𝑑𝑣 𝑖 𝑉 =− − 𝑑𝑡 𝐶 𝑅𝐶 𝑑 𝑖 [ ] 𝑑𝑡 𝑣 𝑑 𝑖 [ ] 𝑑𝑡 𝑣 0 =[ 1 −𝐶 1 𝐿 𝑖 1 ][ ] + − 𝑅𝐶 𝑉 𝑖 = 𝐴1 [ ] + 𝐵1 𝑉𝑔 𝑣 0 [ ] 𝑉𝑔 → (3) 0 → (4) By comparing the equation’s (3) and (4) we get values of 𝐴2 and 𝐵2 0 𝐴2 = [ 1 − 𝐶 1 𝐿 0 𝐵2 = [ ] 0 1] − 𝑅𝐶 𝐴 = 𝐷𝐴1 + 𝐷 ′ 𝐴2 0 𝐴=[ 𝐷′ − 𝐶 𝐷′ 𝐿 ] 1 − 𝑅𝐶 𝐵 = 𝐷𝐵1 + 𝐷 ′ 𝐵2 𝐷 𝐵 = [𝐿 ] 0 𝑋 = −𝐴‾¹-----𝐵𝑉𝑔 0 𝐼 𝑋 = [ ] = −[ 𝐷′ 𝑉 − 𝐶 𝐷′ 𝐿 ] ‾1 1 − 𝑅𝐶 𝐷𝑉𝑔 ′2 𝐼 𝑋=[ ]=[ 𝐷 𝑅 ] 𝐷𝑉𝑔 𝑉 − ′ 𝐷 𝐼= 𝐷𝑉𝑔 𝐷 ′2 𝑅 𝑉=− 𝐷𝑉𝑔 𝐷′ 𝐷 [ 𝐿 ] 𝑉𝑔 0 Calculating inductor current ripple and capacitor voltage ripple: We know that the following formula for calculating the ripple values ∆𝑋 = (𝐴1𝑋 + 𝐵1𝑉𝑔)𝐷𝑇𝑠 𝐷𝑉𝑔𝑇𝑠 ∆𝐼 𝐿 ∆𝑋 = [ ] = [ 2 ] 𝐷 𝑉𝑔𝑇𝑠 ∆𝑉 𝐷 ′ 𝑅𝐶 Inductor current ripple is ∆𝐼 = 𝐷𝑉𝑔𝑇𝑠 𝐿 Capacitor voltage ripple is 𝐷 2 𝑉𝑔𝑇𝑠 ∆𝑉 = 𝐷 ′ 𝑅𝐶
© Copyright 2026 Paperzz