Mat 241 Chapter 16 exam BKEY Fall, 2013 Name ___________________________ Directions: Show all work for each question and make sure your answers are clearly identified. You may use the back side of pages if needed. #1. (5 pts) Use the Divergence Theorem to calculate the surface integral F dS with the given vector field S F x, y, z e y sin z xy 2 , x 2 y e x cos z , tan 1 xy on the extremely uncool surface of the bounded solid created by the functions: z x 2 y 2 and z 9 Assume outward pointing orientation. F dS divFdV x S E 2 3 r dzdrd r z 3 3 0 0 r2 2 0 0 3 9 4 r6 r d 4 6 0 0 9 81 9 81 0 4 6 d 243 2 2 y 2 dV E 2 3 9 2 9 r 2 drd 2 3 9r 0 0 3 r 5 drd #2. Suppose we wish to compute the work done on a particle as it traverses the helical path shown in the figure defined by: r t 2 cos t ,2 sin t , t from 2 , 0 , 0 to 1 , 3 , 3 . This requires a line integral. b W F dr F r t r' t dt C a If we are lucky, the field is a gradient field and is therefore independent of path (conservative). Use the vector field, F , for questions A, B, and C. F x, y, z 8 xy 3 z ,12 x 2 y 2 z ,4 x 2 y 3 A. (2pts) Compute curlF to show that F is a conservative vector field. F x, y, z 8 xy 3 z ,12 x 2 y 2 z ,4 x 2 y 3 i curl F j x y 3 8 xy z 12 x 2 y 2 z k z 4x2 y3 12 x 2 y 2 12 x 2 y 2 i 8 xy 3 8 xy 3 j 24 xy 2 z 24 xy 2 z k 0 B. (2pts) Find a potential function, f , such that f F . F x, y, z 8 xy 3 z ,12 x 2 y 2 z , 4 x 2 y 3 f x 8 xy 3 z f x 8 xy 3 z dx 4 x 2 y 3 z g y , z f y 12 x 2 y 2 z f y 12 x 2 y 2 z dy 4 x 2 y 3 z h x, z f z 4 x 2 y 3 f z 4 x 2 y 3 dz 4 x 2 y 3 z j x, y f x, y , z 4 x 2 y 3 z C.(2pts) Compute the work using your result from part B and the fundamental theorem of line integrals: f dr f r b f r a where f is a potential function. C f dr f 1, 3, f 2,0,0 where f is a potential function. C 3 3 2 2 3 f 1, 3, 4 1 3 4 3; f 2,0,0 4 2 0 0 0 3 3 f 1, 3, f 2,0,0 4 3 0 4 3 3 #3. (6pts) I went over to the tutor center with the following very nasty vector field F x, y, z e z 2 2 z x,sin xyz y 1, e z sin z 2 2 I wanted to compute the work along the very simple curve, C, parameterized by: r t cos t ,sin t ,0 where 0 t 2 where C is oriented counterclockwise as viewed from the positive z – axis. A tutor named Peter said, “Hey, you can use Stokes’ Theorem” with the following surface. Looking at the surface a light-bulb went off in my head! I can use any surface which the curve bounds with Stokes’ Theorem. Part1: (3 points) Instead of Peter’s ridiculous surface, choose a VERY simple surface and compute the work around the curve. F x, y , z e z curl F ez 2 2 z x,sin xyz y 1, e z sin z 2 2 i j k x y z 2 2 z x sin xyz y 1 e z sin z 2 2 0 xy cos xyz i 0 2 z 2 e z xy cos xyz , 2 z 2 e z 2 2 z 2 2 z x j yz cos xyz 0 k x, yz cos xyz Since we really just have a circle in the xy-plane, let’s choose the surface to be z = 0. Our space curve certainly contains it. Then, the normal to the surface z = 0 pointing upward is given by: n z z , ,1 0 , 0 ,1 x y So by Stokes’ Theorem; F dr curlF ndA C D xy cos xyz , 2z 2 ez 2 2z x , yz cos xyz 0 , 0 ,1 dA D yz cos xyz dA D y 0 cos xy 0 dA /** When I replace z = 0. D = 0dA D 0 Part2: (3 points) Compute the line integral directly using. b W F dr F r t r' t dt C F x, y , z e z F r t e 2 2 z 02 2 0 a x,sin xyz y 1, e z sin z 2 2 cos t ,sin cos t sin t 0 sin t 1, e 0 sin 0 2 2 cos t ,sin t 1,0 r ' t sin t ,cos t ,0 2 b F dr F r t r ' t dt C a cos t ,sin t 1,0 sin t ,cos t ,0 dt 0 2 cos t sin t sin t cos t 0 dt 0 2 0 dt 0 0 #4. (5pts) I have decided to divulge the top-secret equation that draws the Hershey Kiss candy. Here it is: r t sin2 t t , t2 1 -1 t 1 Use Green’s Theorem in reverse to determine the cross-sectional area of the Kiss! Sorry, guys….wrong Kiss We need to select a vector field, F , such that Q P 1 . There are three x y choices which our book presents: y x F 0 , x , F y , 0 , and F , 2 2 We’ll use the first. Then the line integral value will be equivalent to the area of the Kiss. Q P F r t r' t dt a D x y dA D 1dA the area value b r' t stuff,2t b 1 a 1 F r t r' t dt 1 sin2 t 0, stuff,2t dt 2sin2 t dt t 1 2 2u 1 sin2 u du sin 2u 2 4 2 1 1 sin 2 sin 2 2 4 2 4 2 2 2 2
© Copyright 2026 Paperzz