On k-Fibonacci numbers of arithmetic indexes

Applied Mathematics and Computation 208 (2009) 180–185
Contents lists available at ScienceDirect
Applied Mathematics and Computation
journal homepage: www.elsevier.com/locate/amc
On k-Fibonacci numbers of arithmetic indexes
Sergio Falcon *, Angel Plaza
Department of Mathematics, University of Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain
a r t i c l e
i n f o
a b s t r a c t
In this paper, we study the sums of k-Fibonacci numbers with indexes in an arithmetic
sequence, say an þ r for fixed integers a and r. This enables us to give in a straightforward
way several formulas for the sums of such numbers.
Ó 2008 Elsevier Inc. All rights reserved.
Keywords:
k-Fibonacci numbers
Sequences of partial sums
1. Introduction
One of the more studied sequences is the Fibonacci sequence [1–3], and it has been generalized in many ways [4–10].
Here, we use the following one-parameter generalization of the Fibonacci sequence.
Definition 1. For any integer number k P 1, the kth Fibonacci sequence, say fF k;n gn2N is defined recurrently by
F k;0 ¼ 0;
F k;1 ¼ 1;
and F k;nþ1 ¼ kF k;n þ F k;n1
for n P 1:
Note that for k ¼ 1 the classical Fibonacci sequence is obtained while for k ¼ 2 we obtain the Pell sequence. Some of the
properties that the k-Fibonacci numbers verify and that we will need later are summarized below [11–15]:
pffiffiffiffiffiffiffiffi
pffiffiffiffiffiffiffiffi
2
2
rn rn
[Binet’s formula] F k;n ¼ r11 r22 , where r1 ¼ kþ 2k þ4 and r2 ¼ k 2k þ4. These roots verify r1 þ r2 ¼ k, and r1 r2 ¼ 1
nþ1r 2
2
F k;r
[Catalan’s identity] F k;nr F k;nþr F k;n ¼ ð1Þ
[Simson’s identity] F k;n1 F k;nþ1 F 2k;n ¼ ð1Þn
[D’Ocagne’s identity] F k;m F k;nþ1 F k;mþ1 F k;n ¼ ð1Þn F k;mn
[Convolution Product] F k;nþm ¼ F k;nþ1 F k;m þ F k;n F k;m1
In this paper, we study different sums of k-Fibonacci numbers. Sums of Fibonacci numbers appear in different contexts,
even they are related with the dimensionality of heterotic superstrings [16,17]. We focus here on the subsequences of
k-Fibonacci numbers with indexes in an arithmetic sequence, say an þ r for fixed integers a, r with 0 6 r 6 a 1. Several
formulas for the sums of such numbers are deduced in a straightforward way.
2. On the k-Fibonacci numbers of kind an þ r
Let us prove two lemmas that we will need later.
Lemma 2. For all integer n (n P 1):
rn1 þ rn2 ¼ F k;nþ1 þ F k;n1 :
* Corresponding author.
E-mail address: [email protected] (S. Falcon).
0096-3003/$ - see front matter Ó 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2008.11.031
ð1Þ
S. Falcon, A. Plaza / Applied Mathematics and Computation 208 (2009) 180–185
Proof. Applying Binet’s formula and taking into account that
181
r1 r2 ¼ 1
1
1
1
1
nþ1
n1
n1
n
n
ðrnþ1
r
þ
r
r
Þ
¼
r
r
þ
r
r
þ
2
2
1
2
2
r1 r2 1
r1 r2 1 1 r1
r2
1
n
n
n
n
ðr ðr r2 Þ þ r2 ðr1 r2 ÞÞ ¼ r1 þ r2 :
¼
r1 r2 1 1
F k;nþ1 þ F k;n1 ¼
Lemma 3. F k;aðnþ2Þþr ¼ ðF k;a1 þ F k;aþ1 ÞF k;aðnþ1Þþr ð1Þa F k;anþr
Proof. Taking into account Lemma 2 and Binet’s formula:
ðF k;a1 þ F k;aþ1 ÞF k;aðnþ1Þþr ¼ ðra1 þ ra2 Þ
r1aðnþ1Þþr raðnþ1Þþr
1
aðnþ2Þþr
aðnþ2Þþr
2
¼
ðr
r2
þ ð1Þa r1anþr ð1Þa r2anþr Þ
r1 r2
r1 r2 1
¼ F k;aðnþ2Þþr þ ð1Þa F k;anþr :
Let us denote F k;n1 þ F k;nþ1 by Lk;n (numbers Lk;n are called k-Lucas numbers).
Then previous formula becomes
F k;aðnþ2Þþr ¼ Lk;a F k;aðnþ1Þþr ð1Þa F k;anþr :
ð2Þ
Eq. (2) gives the general term of the k-Fibonacci sequence fF k;anþr g1
n¼0 as a linear combination of the two preceding terms.
Note that, applying iteratively this formula, the general term can be written as a non-linear combination of the two first
terms of the sequence:
F k;anþr
0 n1
1
0 n2
1
½X
½X
2 2 n1i
n2i
ðaþ1Þi
ðaþ1Þðiþ1Þ
n12i
n12i
n22i
AF
@ ð1Þ
AF n2i :
¼ @ ð1Þ
Lk;a
Lk;a
k;aþr þ
k;r
i
i
i¼0
i¼0
In this way, the general term of sequence fF k;anþr g is written in function of the two first terms. In particular, for a ¼ 1 it is
r ¼ 0, see [12], we have
n12i
F k;n ¼ k
n1 ½X
2 n1i
i¼0
i
:
2.1. Generating function of the sequence fF k;anþr g
Let fa;r ðk; xÞ be the generating function of the sequence fF k;anþr g, with 0 6 r 6 a 1. That is, fa;r ðk; xÞ ¼ F k;r þ
F k;aþr x þ F k;2aþr x2 þ . After some easy algebra
ð1 Lk;a x þ ð1Þa x2 Þfa;r ðk; xÞ ¼ F k;r þ ðF k;aþr F k;r Lk;a Þx þ
X
F k;aðnþ2Þþr Lk;a F k;aðnþ1Þþr þ ð1Þa F k;anþr xn :
nP2
First, taking into account Lemma 3, the series of the Right Hand Side vanishes.
On the other hand, the Convolution Product Identity establishes that F k;rþa ¼ F k;r F k;aþ1 þ F k;r1 F k;a , so F k;aþr F k;r Lk;a ¼
F k;a F k;rþ1 F k;aþ1 F k;r .
Finally, F k;ar ¼ F k;r F k;aþ1 þ F k;r1 F k;a ¼ ð1Þr ðF k;aþ1 F k;r þ F k;a F k;rþ1 Þ, and the generating function for the initial power series is
fa;r ðk; xÞ ¼
F k;r þ ð1Þr F k;ar x
:
1 Lk;a x þ ð1Þa x2
2.1.1. Particular cases
The generating functions of sequences fF k;anþr g for different values of parameters a and r are
x
(1) a ¼ 1 and then r ¼ 0: f1;0 ðk; xÞ ¼ 1kxx
2 [12,15]
(2) a ¼ 2:
kx
(a)
r ¼ 0: f2;0 ðk; xÞ ¼ 1ðk2 þ2Þxþx
2
(b)
r ¼ 1: f2;1 ðk; xÞ ¼ 1ðk21x
þ2Þxþx2
ð3Þ
182
S. Falcon, A. Plaza / Applied Mathematics and Computation 208 (2009) 180–185
(3) a ¼ 3:
2
þ1Þx
(a)
r ¼ 0: f3;0 ðk; xÞ ¼ 1ðkðk3 þ3kÞxx
2
(b)
r ¼ 1: f3;1 ðk; xÞ ¼ 1ðk31kx
þ3kÞxx2
(c)
r ¼ 2: f3;2 ðk; xÞ ¼ 1ðk3 kþx
þ3kÞxx2
2.2. Sum of k-Fibonacci numbers of kind an þ r
In this section, we study the sum of the k-Fibonacci numbers of kind an þ r, with a an integer number, and
r ¼ 0; 1; 2; . . . ; a 1.
Theorem 4. Sum of the k-Fibonacci numbers of kind an þ r
n
X
F k;aiþr ¼
i¼0
F k;aðnþ1Þþr ð1Þa F k;anþr F k;r ð1Þr F k;ar
:
F k;aþ1 þ F k;a1 ð1Þa 1
Proof. Applying Binnet’s formula to Sk;anþr ¼
n
X
Sk;anþr ¼
i¼0
Pn
i¼0 F k;aiþr ,
ð4Þ
we get
!
anþrþa
n
n
X
X
raiþr
raiþr
r1
rr1 ranþrþa
rr2
1
1
1
2
2
¼
¼
r1aiþr raiþr
2
r1 r2
r1 r2 i¼0
r1 r2
ra1 1
ra2 1
i¼0
1
aðnþ1Þþr
aðnþ1Þþr
a
a
anþr
r a
r
anþr
a r
r
r
ð
r
r
Þ
r
r
r
þ
r
r
ð
r
r
Þ
þ
r
r
þ
r
r
1
2
1
2
1
1
2
1
2
1
2
2
1
2
ðr1 r2 Þ ra1 ra2 þ 1 r1 r2
!
aðnþ1Þþr
anþr
1
ranþr
raðnþ1Þþr
r2
rr1 rr2 ra2 ðra1 ðr1 Þr r2 Þr
a r1
2
1
ð1Þ
þ
þ
¼
r1 r2
r1 r2
r1 r2
r1 r2
ð1Þa ðra1 þ ra2 Þ þ 1
1
¼
a
F k;aðnþ1Þþr ð1Þa F k;anþr F k;r ð1Þr F k;ar
;
F k;aþ1 þ F k;a1 ð1Þa 1
¼
where we have used Eq. (2). h
For k ¼ 1; 2; 3 different sequences of these partial sums are listed in OEIS [18].
Corollary 5. Sum of odd k-Fibonacci numbers
If a ¼ 2p þ 1 then Eq. (4) is
n
X
F k;ð2pþ1Þiþr ¼
i¼0
F k;ð2pþ1Þðnþ1Þþr þ F k;ð2pþ1Þnþr F k;r ð1Þr F k;ð2pþ1Þr
:
F k;2pþ2 þ F k;2p
ð5Þ
For example
(1) If p ¼ 0 then a ¼ 1 ! r ¼ 0, and
Pn
i¼0 F k;i
¼
F k;nþ1 þF k;n F k;0 F k;1
F k;2 þF k;0
¼
F k;nþ1 þF k;n 1
k
(a) For k ¼ 1, for the classical Fibonacci sequence it is
n
X
i¼0
Fi ¼
F nþ1 þ F n 1
¼ F nþ2 1:
k
P
n 1
(b) For k ¼ 2, for the Pell sequence we obtain ni¼0 P i ¼ Pnþ1 þP
2
r
Pn
F
þF
F k;r ð1Þ F k;3r
(2) If p ¼ 1 ! a ¼ 3, then i¼0 F k;3iþr ¼ k;3ðnþ1Þþr k;3nþr
k3 þ3k
Pn
F k;3nþ3 þF k;3n k2 1
(a)
r ¼ 0: i¼0 F k;3i ¼
k3 þ3k
For the classical Fibonacci sequence, k ¼ 1, it is
n
X
i¼0
(b)
n
X
i¼0
F 3i ¼
F 3nþ3 þ F 3n 2
:
4
P
F
þF k;3nþ1 þk1
r ¼ 1: ni¼0 F k;3iþ1 ¼ k;3nþ4 k3 þ3k
For the classical Fibonacci sequence, k ¼ 1, it is
F 3iþ1 ¼
F 3nþ4 þ F 3nþ1
:
4
[11,12]
S. Falcon, A. Plaza / Applied Mathematics and Computation 208 (2009) 180–185
(c)
n
X
183
P
F
þF k;3nþ2 k1
r ¼ 2: ni¼0 F k;3iþ2 ¼ k;3nþ5 k3 þ3k
For the classical Fibonacci sequence, k ¼ 1, it is
F 3iþ2 ¼
i¼0
F 3nþ5 þ F 3nþ2 2
4
(3) If p ¼ 2 ! a ¼ 5, then
n
X
F k;5iþr ¼
F k;5ðnþ1Þþr þ F k;5nþr F k;r ð1Þr F k;5r
5
(a)
(b)
(c)
(d)
(e)
3
k þ 5k þ 5k
i¼0
r ¼ 0:
Pn
r ¼ 1:
Pn
¼
r ¼ 2:
Pn
¼
r ¼ 3:
Pn
¼
r ¼ 4:
Pn
¼
i¼0 F k;5i
¼
i¼0 F k;5iþ1
i¼0 F k;5iþ2
i¼0 F k;5iþ3
i¼0 F k;5iþ4
:
F k;5nþ5 þF k;5n k4 3k2 1
k5 þ5k3 þ5k
F k;5nþ6 þF k;5nþ1 þk3 þ2k1
k5 þ5k3 þ5k
F k;5nþ7 þF k;5nþ2 k2 k1
k5 þ5k3 þ5k
F k;5nþ8 þF k;5nþ3 k2 þk1
k5 þ5k3 þ5k
F k;5nþ9 þF k;5nþ4 k3 2k1
k5 þ5k3 þ5k
Corollary 6. Sum of even k-Fibonacci numbers
If a ¼ 2p then Eq. (4) is
n
X
F k;2piþr ¼
i¼0
F k;2pðnþ1Þþr F k;2pnþr F k;r ð1Þr F k;2pr
:
F k;2pþ1 þ F k;2p1 2
For example,
(1) If p ¼ 1 ! a ¼ 2, then
n
X
F k;2iþr ¼
kF k;2nþ1þr F k;r ð1Þr F k;2r
k
i¼0
(a)
n
X
r ¼ 0:
Pn
i¼0 F k;2i
¼
2
F k;2nþ1 1
For
k
:
the classical Fibonacci sequence, k ¼ 1, it is
F 2i ¼ F 2nþ1 1:
i¼0
P
F
(b)
r ¼ 1: ni¼0 F k;2iþ1 ¼ k;2nþ2
k
For the classical Fibonacci sequence, k ¼ 1, it is
n
X
F 2iþ1 ¼ F 2nþ2 :
i¼0
(2) If p ¼ 2 ! a ¼ 4, then
n
X
F k;4iþr ¼
F k;4ðnþ1Þþr F k;4nþr F k;r ð1Þr F k;4r
4
k þ 4k
i¼0
(a)
(b)
(c)
(d)
r ¼ 0:
Pn
r ¼ 1:
Pn
¼
r ¼ 2:
Pn
¼
r ¼ 3:
Pn
¼
i¼0 F k;4i
¼
i¼0 F k;4iþ1
i¼0 F k;4iþ2
i¼0 F k;4iþ3
2
F k;4nþ4 F k;4n k3 2k
k4 þ4k2
F k;4nþ5 F k;4nþ1 þk2
k4 þ4k2
F k;4nþ6 F k;4nþ2 2k
k4 þ4k2
F k;4nþ7 F k;4nþ3 þk2
k4 þ4k2
:
ð6Þ
184
S. Falcon, A. Plaza / Applied Mathematics and Computation 208 (2009) 180–185
2.3. Recurrence law for the sequence of sums of k-Fibonacci numbers of arithmetic indexes
It is relatively easy to prove by induction that the sequence fSk;anþr g ¼
Sk;aðnþ1Þþr ¼ Lk;a Sk;anþr þ ð1Þaþ1 Sk;aðn1Þþr þ F k;r þ ð1Þr F k;ar .
Sk;anþr ¼
n
X
F k;aiþr ¼ F k;r þ F k;aþr þ
i¼0
n
X
Pn
i¼0 F k;aiþr
, verifies the recurrence relation
Lk;a F k;aði1Þþr ð1Þa F k;aði2Þþr ¼ F k;r þ F k;aþr þ Lk;a
i¼2
n1
X
i¼1
þF k;aiþr ð1Þa
n2
X
þF k;aiþr
i¼0
¼ F k;r þ F k;aþr þ Lk;a ðSk;aðn1Þþr F k;r Þ ð1Þa Sk;aðn2Þþr :
Now considering Sk;anþr and Sk;aðnþ1Þþr :
Sk;anþr ¼ ð1 Lk;a ÞF k;r þ F k;aþr þ Lk;a Sk;aðn1Þþr ð1Þa Sk;aðn2Þþr ;
Sk;aðnþ1Þþr ¼ ð1 Lk;a ÞF k;r þ F k;aþr þ Lk;a Sk;anþr ð1Þa Sk;aðn1Þþr
by eliminating the terms ð1 Lk;a ÞF k;r þ F k;aþr , it is deduced:
Sk;aðnþ1Þþr ¼ ð1 þ Lk;a ÞSk;anþr ðLk;a þ ð1Þa ÞSk;aðn1Þþr þ ð1Þa Sk;aðn2Þþr :
So, the characteristic polynomial of sequence fSk;anþr g is r3 ¼ ð1 þ Lk;a Þr2 ðLk;a þ ð1Þa Þr þ ð1Þa Sk;aðn2Þþr , with roots r0 ¼ 1,
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ffi
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ffi
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lk;a þ
L2k;a 4ð1Þa
Lk;a L2k;a 4ð1Þa
,
and
r
¼
. These numbers verify r1 þ r2 ¼ Lk;a , r1 r2 ¼ ð1Þa , and r 1 r2 ¼ L2k;a 4ð1Þa .
r1 ¼
2
2
2
Then, the solution for Sk;anþr is of the form Sk;anþr ¼ C 0 þ C 1 r n1 þ C 2 rn2 . Having in mind the relations between r1 and r2 , after
some algebra is obtained
C0 ¼
ðr 1 Lk;a ÞF k;aþr þ ðLk;a 1ÞF k;r
;
Lk;a 1 ð1Þa
C1 ¼
ðr 1 Lk;a ÞF k;aþr þ ð1Þa F k;r
;
ðr1 r 2 Þðr 2 1Þ
C2 ¼ ðr 2 Lk;a ÞF k;aþr þ ð1Þa F k;r
:
ðr 1 r 2 Þðr 1 1Þ
Observe that, in the case a ¼ 1, r ¼ 0, and then the recurrence becomes Snþ1 ¼ ð1 þ kÞSn ðk 1ÞSn1 Sn2 , which, for the
classical Fibonacci (that is k ¼ 1) reports Snþ1 ¼ 2Sn Sn2 .
way that in the preceding case, we can find that
Let us now consider the alternating sequence fð1Þn F k;anþr g. In a similar
F k;r ð1Þr F k;ar x
. Moreover, the following result is given:
the generating function for this alternating sequence is g a;r ðk; xÞ ¼ 1L
xþð1Þa x2
k;a
Theorem 7. Alternating sum of the k-Fibonacci numbers of order an þ r
n
X
ð1Þn F k;aðnþ1Þþr þ ð1Þnþa F k;anþr þ ð1Þrþ1 F k;ar þ F k;r
ð1Þi F k;aiþr ¼
F k;aþ1 þ F k;a1 þ ð1Þa þ 1
i¼0
which for different values of a and r reads as
Pn
ð1Þn F k;nþ1 ð1Þn F k;n 1
ð1Þi F k;i ¼
(1)
k
Pi¼0
ð1Þn F k;2nþ2 þð1Þn F k;2n k
n
i
(2)
¼ ð1Þn F k;n F k;nþ1
i¼0 ð1Þ F k;2i ¼
k2 þ4
Pn
i
n 2
(3)
i¼0 ð1Þ F k;2iþ1 ¼ ð1Þ F k;nþ1
n
Pn
ð1Þ
F
i
k;4nþ2 k
(4)
i¼0 ð1Þ F k;4i ¼
k2 þ2
Pn
ð1Þn F k;4nþ3 þ1
i
(5)
i¼0 ð1Þ F k;4iþ1 ¼
k2 þ2
Pn
ð1Þn F k;4nþ4
i
(6)
i¼0 ð1Þ F k;4iþ2 ¼
k2 þ2
Pn
ð1Þn F k;4nþ5 þ1
i
(7)
i¼0 ð1Þ F k;4iþ3 ¼
k2 þ2
3. Conclusions
We have studied the subsequences of k-Fibonacci numbers with indexes in an arithmetic sequence. In a compact and direct way many formulas for the sums of such numbers have been deduced.
Acknowledgement
This work has been supported in part by CICYT Project No. MTM2008-05866-C03-02/MTM from Ministerio de Educación
y Ciencia of Spain.
S. Falcon, A. Plaza / Applied Mathematics and Computation 208 (2009) 180–185
185
References
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
V.E. Hoggat, Fibonacci and Lucas Numbers, Palo Alto, Houghton-Mifflin, CA, 1969.
M. Livio, The Golden Ratio: The Story of Phi, The World’s Most Astonishing Number, Broadway Books, New York, 2002.
S. Vajda, Fibonacci & Lucas Numbers and the Golden Section, Theory and Applications, Ellis Horwood Limited, 1989.
A.F. Horadam, A generalized Fibonacci sequence, Math. Mag. 68 (1961) 455–459.
A.G. Shanon, A.F. Horadam, Generalized Fibonacci triples, Amer. Math. Month. 80 (1973) 187–190.
E. Kilic, The Binet formula, sums and representations of generalized Fibonacci p-numbers, Eur. J. Combin. 29 (3) (2008) 701–711.
S. Yang, On the k-generalized Fibonacci numbers and high-order linear recurrence relations, Appl. Math. Comput. 196 (2) (2008) 850–857.
A.A. Ocal, N. Tuglu, E. Altinisik, On the representation of k-generalized Fibonacci and Lucas numbers, Appl. Math. Comput. 170 (1) (2005) 584–596.
X. Fu, X. Zhou, On matrices related with Fibonacci and Lucas numbers, Appl. Math. Comput. 200 (1) (2008) 100–960.
H. Civciv, A note on the determinants of pentadiagonal matrices with the generalized Fibonacci and Lucas numbers, Appl. Math. Comput., in press.
doi:10.1016/j.amc.2008.06.007.
S. Falcon, A. Plaza, On the Fibonacci k-numbers, Chaos, Soliton Fract. 32 (5) (2007) 1615–1624.
S. Falcon, A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos, Soliton Fract. 33 (1) (2007) 38–49.
S. Falcon, A. Plaza, The k-Fibonacci hyperbolic functions, Chaos, Soliton Fract. 38 (2) (2008) 409–420.
S. Falcon, A. Plaza, On the 3-dimensional k-Fibonacci spirals, Chaos, Soliton Fract. 38 (4) (2008) 993–1003.
S. Falcon, A. Plaza, On k-Fibonacci sequences and polynomials and their derivatives, Chaos, Soliton Fract., in press. doi:10.1016/j.chaos.2007.03.007.
M.S. El Naschie, Notes on superstrings and the infinite sums of Fibonacci and Lucas numbers, Chaos, Soliton Fract. 12 (10) (2001) 1937–1940.
M.S. El Naschie, E-eight exceptional Lie groups, Fibonacci lattices and the standard model, Chaos, Soliton Fract., in press. doi:10.1016/
j.chaos.2008.05.015.
N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, 2006. <www.research.att.com/~njas/sequences/>.