Units 5,6,7 Practice Exam group 3with soultions Units 5,6

Name: _______________________
Date: _______________________
Class: _______________________
Chapter 5.3-7.3 Test
NO CALCULATOR
1. Find the vertical asymptote of the graph of f(x)
π‘₯2 βˆ’ 1
𝑓(π‘₯) =
2π‘₯ + 4
solution:
2. Interpret the integrand as the rate of change of a quantity and evaluate the integral using the
antiderivative of the quantity.
a.
1
∫ 𝑒 π‘₯ 𝑑π‘₯
0
𝑒 π‘₯ |10
(𝑒 1 ) βˆ’ (𝑒 0 )
(𝑒) βˆ’ (1) = 𝒆 βˆ’ 𝟏
b.
2πœ‹
∫ sin π‘₯ 𝑑π‘₯
πœ‹
βˆ’cos π‘₯ |2πœ‹
πœ‹
(βˆ’ cos 2πœ‹) βˆ’ (βˆ’ cos πœ‹)
(βˆ’1) βˆ’ (1) = βˆ’πŸ
3. Evaluate each integral using Part 2 Fundamental Theorem. Support your answer with NINT
if you are unsure.
1
∫ (π‘₯ 2 + √π‘₯) 𝑑π‘₯
0
𝑑
𝑑
4. Use u substitution to find the integral. ∫(1 βˆ’ π‘π‘œπ‘  2)2 sin(2)
SOLUTION:
𝑑
𝑒 = (1 βˆ’ π‘π‘œπ‘  )
2
1
𝑑
𝑑𝑒 = sin ( )
2
2
2 ∫ 𝑒2 𝑑𝑒
β†’
𝑒3
2( )
3
β†’
𝑑
(1 βˆ’ π‘π‘œπ‘  (2))3
2(
)+𝐢
3
5. The function v(t) is the velocity in m/sec of a particle moving along the x-axis. Use analytic
methods to do each of the following:
a. Determine when the particle is moving to the right, to the left, and stopped
b. Find the particle’s displacement for the given time interval. If s(0) = 3, what is
the particle’s final position?
c. Find the total distance traveled by the particle
Solutions
CALCULATOR
6. What is the average value of the cosine function on the interval [1,5]?
a) -0.990
b) -0.450
c) -0.128
d) 0.412
e) 0.998
7. Evaluate each integral using Part 2 Fundamental Theorem. Support your answer with NINT
if you are unsure.
3
1
∫ (2 βˆ’ ) 𝑑π‘₯
π‘₯
1/2
8. Use NINT to solve the problem
10
∫
0
1
𝑑π‘₯
3 + 2 sin π‘₯
9. For the following problem:
a. Use Trapezoidal Rule with n=4 to approximate the value of the integral
b. Use concavity to determine if the approximation is an overestimate or an
underestimate
c. Find the integral’s exact value to check your answer
πœ‹
∫ 𝑠𝑖𝑛π‘₯𝑑π‘₯
0
Solution
a.
b.
c.
10. find the area of the shaded region
Solution:
11. Find the volume of the solid generated by revolving the region bounded by the lines and
curves about the x-axis
a. y=x2
b. y=0
c. x=2
Solution
graph
2
πœ‹ ∫ [(π‘₯ 2 )2 βˆ’ 02 ] 𝑑π‘₯
0
2
πœ‹ ∫ π‘₯4
0
π‘₯5 2
πœ‹ ( ) |0
5
25
πŸ‘πŸπ…
πœ‹ ( βˆ’ 0) =
5
πŸ“
12. The first three terms of an arithmetic sequence are 36, 40, 44
a.
i. write down the value of d
ii. find u8
b.
i. show that 𝑆𝑛 = 2𝑛2 + 34𝑛
ii. hence, write down the value of S14
Solution:
See Paper 2 problem 1 solution
13.
Solution:
See paper 2 problem 4 for solution