7.3 Transportation Simplex Method How to pivot Step 1 Determine the variables that should enter the basis. Step 2 Find the loop involving the entering variable and some of the basic variables. Step 3 Counting only cells in the loop. Label even cells and odd cells. Step 4 Find the odd cell whose variable assume the smallest value. To perform the pivot, decrease the value of each odd cell and increase the value of each even cell. 0 1 2 3 4 5 (1,4) – (3,4) – (3,3) – (2,3) – (2,1) – (1,1) 35 10 45 * 20 20 20 10 30 35 50 30 40 30 35-20 10+20 0+20 20 20-20 10+20 30-20 45 20 30 30 35 50 40 How to determine whether a bfs is optimal How to determine which nonbasic variable should enter the basis 1. First supply constraint dropped (u1 =0) 2. -ui : shadow price of the i th supply constraint -vj : shadow price of the j th demand constraint 3. cij ui v j 0 or ui v j cij 0 for all nonbasic variables Then current bfs is optimal 4. Otherwise nonbasic variables with most positive value of u i v j cij should enter the basis u1 0 c ij ui v j cij 35 8 6 10 9 35 u1 v1 8 c12 u1 v2 c12 50 10 9 20122013 7 u2 v1 9 0 11 6 5 14 9 101630 5 40 u2 v2 12 c13 2, c14 8 45 20 30 30 u2 v3 13 ui v j cij 0 u3 v3 16 c 24 5, c 31 2 c 32 6 for all BV u3 v 4 5 How to determine whether a bfs is optimal vj 1 35 8 6 10 9 35 10 9 20122013 7 50 14 9 101630 5 40 45 20 30 30 vj 3 ui 8 6 12 2 0 25 8 10 6 10 9 35 1 20 9 123013 7 50 3 1410 9 1630 5 40 45 20 30 30 8 11 12 7 2 0 35 8 6 10 9 35 ui 1 10 9 10123013 7 50 -2 1410 9 1630 5 40 45 20 30 30 6 4 ui vj 6 10 2 0 8 10 6 2510 9 35 3 45 9 12 5 13 7 50 3 1410 9 1630 5 40 45 20 30 30 z 8 x11 6 x12 10 x13 9 x14 9 x21 12 x22 13 x23 7 x24 14 x31 9 x32 16 x33 5 x34 6(10) 10( 25) 9( 45) 13(5) 9(10) 5(30) 1020 Solution of Exercise 7 3 1 0 12 7 6 3 0 9 14 3 8 7 2 12 20 6 4 2 10 18 8 6 8 22 8 8 18 6 26 16 18 2 7 -1 0 12 7 3 9 20 3 4 8 7 6 12 20 2 0 6 2 10 18 2 6 8 22 8 8 18 6 26 16 18 c13 4, c14 6, c21 2, c24 4, c31 1, c32 2 c12 4, c14 10, c21 2, c24 4, c31 5, c32 2 3 7 -1 2 5 0 4 7 3 14 2 10 18 4 9 20 3 2 6 8 22 7 8 18 6 26 1 8 8 12 20 16 18 4 7 1 2 5 0 2 7 3 16 2 10 18 2 2 9 20 3 6 8 22 1 8 8 7 8 18 6 26 12 20 16 18 c12 4, c14 5, c21 2, c24 1, c32 7, c33 5 c12 2, c14 5, c23 2, c24 1, c32 5, c33 5 z 7 x11 3 x12 2 x13 10 x14 9 x21 3 x22 6 x23 8 x24 8 x31 7 x32 8 x33 6 x34 7(2) 2(16) 9(2) 3(20) 8(8) 6(18) 296 All negative 7.5 Assignment Problems Machine/Job 1 2 3 4 1 14 2 7 2 2 5 12 8 4 3 8 6 3 6 4 7 5 9 10 xij 1 : if machine i is assigned to meet the demand of job j xij 0 : if machine i is not assigned to meet the demand of job j min z 14 x11 5 x12 8 x13 7 x14 2 x21 12 x22 6 x23 5 x24 7 x31 8 x32 3 x33 9 x34 2 x41 4 x42 6 x43 10 x44 s.t. x11 x12 x13 x14 1 Machine constraints x11 x21 x31 x41 1 Job constraints xij 0 or xij 1 Assignment Problem All supplies and demands = 1 7.6 Transshipment Problems 150 25 8 13 28 MEM 16 NY 200 DEN supply point Total Supply excess total demand 150 200 130 130 dummy demand point 130 17 6 15 26 12 25 LA 6 CHI 14 16 transshipment point Optimal MEM Tableau dummy 90 BOS 130 demand point NY CHI LA BOS Dum 130 8 13 25 28 20 DEN 15 12 2613025 70 NY 220 0 6 13016 17 CHI 6 350 0 14 16 350 350 130 130 0 0 0 0 90 150 200 350 350 Find bfs Minimum cost method 14 5 8 2 12 6 7 8 3 1 2 4 6 + 1 1 7 5 9 10 1 1 1 1 + 14 1 5 8 7 + 2 12 6 1 5 + 7 8 1 3 9 + 1 2 4 6 10 + + + + + 14 5 8 2 12 6 7 8 1 3 1 2 4 6 + 1 + 7 5 9 10 1 1 14 5 8 7 1 1 2 12 6 1 5 + + 7 8 1 3 9 + + 1 2 4 6 10 + + 1 + + Determine whether a bfs is optimal 3 5 7 7 0 14 1 5 8 7 Combinatorial -2 2 12 6 1 5 Optimization Problems -4 7 8 1 3 9 -1 1 2 4 6 10 One of Integer Programming Z =5+5+3+2=15
© Copyright 2026 Paperzz