Goren Gordon , Gershon Kurizki Weizmann Institute of Science, Israel Daniel Lidar University of Southern California, USA QEC07 USC Los Angeles, USA Dec. 17-21, 2007 Outline Universal dynamical decoherence control formalism Brief overview of K K F F y t y ' y t y ' Calculus of Variations Analytical derivation of equation EZ t, t '' t for optimal modulation dt dt Z t , t Numerical results Conclusions R t 2 dG a Ft T 0 2 t1 1 0 2 2 2 Decoherence Scenarios Keller et al. Nature 431, 1075 (2004) Ion trap Cold atom in (imperfect) optical lattice Häffner et al. Nature 438 643 (2005) Jaksch et al. PRL 82, 1975 (1999) Mandel et al. Nature 425, 937 (2003) Ion in cavity Kreuter et al. PRL 92 203002 (2004) Universal dynamical decoherence control formalism Kofman & Kurizki, Nature 405, 546(2000); PRL 87, 270405 (2001); PRL 93, 130406(2004) Gordon, Erez and Kurizki, J. Phys. B, 40, S75 (2007) [review] system+ H t a a t e e modulation bath j j j t ej j e h.c. coupling j | j |e a j ej a |g j Fidelity of an initial excited state: 2 R t t F t e | t Average modified decoherence rate Reservoir response (memory) function e t t1 2 R t Re dt1 dt2 t1 t2 * t1 t2 eia t1 t2 0 0 t t ej e 2 j i j t t dt1 a t1 0 t e i Phase modulation Universal dynamical decoherence control formalism Kofman & Kurizki, Nature 405, 546(2000); PRL 87, 270405 (2001); PRL 93, 130406(2004) Gordon, Erez and Kurizki, J. Phys. B, 40, S75 (2007) [review] Time-domain t t1 2 R t Re dt1 dt2 t1 t2 * t1 t2 eia t1 t2 0 0 t Frequency-domain R t 2 dG a Ft ej 2 Ft t / t System-bath coupling spectrum G Spectral modulation intensity 2 1 t it1 t dt t e 1 1 0 2 t i dt1 a t1 t e 0 Ft() G() R t No modulation (Golden Rule) a t 0 t 1 Ft R 2 G a Universal dynamical decoherence control formalism Single-qubit decoherence control (Gordon et al. J. Phys. B, 40, S75 (2007)) Decay due to finite-temperature bath coupling R R Proper dephasing 1 2 R() t 2 dGT a Ft 1 2 Multi-qudit entanglement preservation Imposing DFS by dynamical modulation Entanglement death and resuscitation G() (Gordon, unpublished) Dephasing control during quantum computation (Gordon & Kurizki, PRA 76, 042310 (2007)) A (Gordon & Kurizki, PRL 97, 110503 (2006)) B Brief overview of Calculus of Variations Want to minimize the functional: F y, y ' F t , y, y 'dt T 0 K y, y ' K t , y, y 'dt E T With the constraint: 0 The procedure: 1. Solve Euler-Lagrange equation Get solution: y t; K K F F y t y ' y t y ' y 0 y0 ; y ' 0 y '0 2. Insert the solution to the constraint: Get E K y t; , y ' t; E 3. Get solution as a function of the constraint: y t; E Analytical derivation of optimal modulation Want to minimize the average modified decoherence rate: T t1 2 R T Re dt1 dt2 t1 t2 * t1 t2 eia t1 t2 0 0 T With the energy constraint (a given modulation energy): T dt t E 2 a 0 (Gordon et al. J. Phys. B, 40, S75 (2007)) AC-Stark shift t i dt1 a t1 0 a t Resonant field amplitude t i dt1 t1 0 r t t e t e |e a |g |e t |g Analytical derivation of optimal modulation Want to minimize the average modified decoherence rate: T t1 2 R T Re dt1 dt2 t1 t2 * t1 t2 eia t1 t2 0 0 T With the energy constraint (a given modulation energy): T 0 dt a t E 2 Euler-Lagrange equation for optimal modulation Use notation: t t ei0t t d a t 0 a 0 '' t Z t , t 0 1 T Z t , t dt1 t t1 sin t t1 t t1 T 0 0 ' 0 0 Analytical derivation of optimal modulation Euler-Lagrange equation for optimal modulation 0 ' 0 0 '' t Z t , t 0 1 T Z t , t dt1 t t1 sin t t1 t t1 T 0 E Using the energy constraint, one can obtain: 1 T dt 0 E t dt Z 0 1 t1 , t1 Equation for Optimal Modulation EZ t , t '' t T 0 dt1 t1 0 dt2Z t2 , t2 2 2 Numerical results Compare optimal modulation to Bang-Bang (BB) control: Viola & Lloyd PRA 58 2733 (1998) Shiokawa & Lidar PRA 69 030302(R) (2004) Vitali & Tombesi PRA 65 012305 (2001) Agarwal, Scully, Walther PRA 63, 044101 (2001) a t a t t d a t 0 t e i t t d ei Ft | |2 / t t 0 Numerical results Compare optimal modulation to Bang-Bang (BB) control: a t Viola & Lloyd PRA 58 2733 (1998) Shiokawa & Lidar PRA 69 030302(R) (2004) Vitali & Tombesi PRA 65 012305 (2001) Agarwal, Scully, Walther PRA 63, 044101 (2001) Numerical results Compare optimal modulation to Bang-Bang (BB) control: / Viola & Lloyd PRA 58 2733 (1998) Shiokawa & Lidar PRA 69 030302(R) (2004) Vitali & Tombesi PRA 65 012305 (2001) Agarwal, Scully, Walther PRA 63, 044101 (2001) G a DD condition / 1/ tc a t 1/ tc R 2 dG a F 0 Numerical results Fidelity e Rt 1/ f noise G 1/ min max R t 2 dG a Ft Optimal pulse shape X F. T. Numerical results G - multi-peaked R t 2 dG a Ft Optimal pulse shape • Dynamical decoupling and Bang-Bang modulations environment-insensitive, i.e. ignore coupling spectrum are • Optimal modulation “reshapes” (chirps) the pulse to minimize spectral overlap of the system-bath coupling and modulation spectra • Current results using universal dynamical decoherence control are also applicable to decay and proper-dephasing, at finitetemperatures • Extensions to multi-partite deocherence optimal control underway… “Know thy enemy” and entanglement Thank you !!!
© Copyright 2026 Paperzz