Lecture 4: Motion in two dimensions • Position, velocity, and acceleration in 2-d • Separation of motion in x-and y-direction • Equations for 2-d kinematics at constant acceleration • Projectile motion Velocity Position vector 𝑟 = 𝑟𝑥 𝑖 + 𝑟𝑦 𝑗 = 𝑥𝑖 + 𝑦𝑗 Average velocity 𝑣𝑎𝑣 = ∆𝑟 ∆𝑡 Instantaneous velocity: 𝑣 = 𝑣 = 𝑣𝑥 𝑖 + 𝑣𝑦 𝑗 = 𝑑𝑥 𝑖 𝑑𝑡 + 𝑑𝑦 𝑗 𝑑𝑡 𝑑𝑟 𝑑𝑡 𝑣𝑥 = 𝑑𝑥 𝑑𝑡 , 𝑣𝑦 = 𝑑𝑦 𝑑𝑡 Small change of position vector in the direction of velocity vector 𝑟𝑓 = 𝑟𝑖 + 𝑣𝑑𝑡 Acceleration Particle has velocity vector 𝑣 = 𝑣𝑥 𝑖 + 𝑣𝑦 𝑗 = 𝑑𝑣 Acceleration: 𝑎 = 𝑑𝑡 𝑑𝑣𝑥 𝑎 = 𝑎𝑥 𝑖 + 𝑎𝑦 𝑗 = 𝑖 𝑑𝑡 𝑎𝑥 = 𝑑𝑣𝑥 𝑑𝑡 = + 𝑑𝑣𝑦 𝑑𝑡 𝑑2 𝑥 𝑑𝑡 2 𝑑𝑥 𝑖 𝑑𝑡 + 𝑑𝑦 𝑗 𝑑𝑡 𝑗 , 𝑎𝑦 = 𝑑𝑣𝑦 𝑑𝑡 = 𝑑2 𝑦 𝑑𝑡 2 Small change in velocity vector occurs in the direction of the acceleration vector 𝑣𝑓 = 𝑣𝑖 + 𝑎𝑑𝑡 Acceleration changes velocity, i.e. speed and direction of motion. Effect of acceleration components Components of acceleration parallel and perpendicular to velocity have different effects. 𝑑 𝑣 = 𝑎𝑑𝑡 𝑎II causes change in magnitude of velocity vector (speed) 𝑎┴ causes change in direction Demonstrations • Vertical launch of ball from traveling car • Simultaneously dropped and horizontally launched balls Kinematics equations For constant acceleration: 𝑥 = 𝑥0 + 𝑣0𝑥 𝑡 + ½𝑎𝑥 𝑡 2 𝑦 = 𝑦0 + 𝑣0𝑦 𝑡 + ½𝑎𝑦 𝑡 2 𝑣𝑥 = 𝑣0𝑥 + 𝑎𝑥 𝑡 𝑣𝑦 = 𝑣0𝑦 + 𝑎𝑦 𝑡 2 𝑣𝑥2 = 𝑣0𝑥 + 2𝑎𝑥 (𝑥 − 𝑥0 ) 2 𝑣𝑦2 = 𝑣0𝑦 + 2𝑎𝑦 (𝑦 − 𝑦0 ) Projectile Motion If only gravity acts on an object (free fall), then acceleration is a constant vector of magnitude g, directed down. Effect on velocity: 𝑣𝑥 = 𝑣0𝑥 + 𝑎𝑥 𝑡 = 𝑣0𝑥 𝑣𝑦 = 𝑣0𝑦 + 𝑎𝑦 𝑡 = 𝑣0𝑦 − 𝑔𝑡 Projectile motion: Simulation http://www.walter-fendt.de/ph14e/projectile.htm Free-fall trajectory 𝑥 = 𝑥0 + 𝑣0𝑥 𝑡 + ½𝑎𝑥 𝑡 2 Worked out on the board… 𝑦 = 𝑦0 + 𝑣0𝑦 𝑡 + ½𝑎𝑦 𝑡 2 Example A man is stranded between a river and a high vertical cliff. To get help, he wants to throw a bottle containing a message over the river. If he throws the bottle with an initial velocity V0 and at a positive angle θ with respect to the horizontal, what is the minimum height H he has to climb up the cliff to ensure that the bottle just barely reaches the opposite river bank, a distance D away? Demo: The hunter and the monkey y H V0 D x *You will work this out in the Homework. Hint: the angle θ between initial velocity and horizontal is not given, but knowing D and H will enable you to find sin θ and cos θ.
© Copyright 2026 Paperzz