Document

Mathematics/P2
RBHS
September 2016
Gr 12 Mathematics
September Paper 2
MEMORANDUM
GRADE 12
Sept Paper 2 2016
MARK DISTRIBUTION
PAPER 2(150 MARKS)
Q
Data
Handling
(20±3)
1
2
Analytical
Geometry
(40±3)
Trigonometry
(40±3)
19
7
14
9
10
11
12
13
150
QUESTIONS
Routine
procedures(35%)
Complex
procedures(30%)
Problem
Solving(15%)
150
9
11
20
14
16
10
40
19
7
14
40
12
8
12
15
3
50
1
2
DH
3
4
5
Analyt
6
7
8
Trig
9
10
11
12
12
Euclid
7
10
85%
12
12
0
60%
10
2
8
50%
9
8
5
6
0
56%
2
1
15%
2
4
5
27.5%
9
3
2
35%
3
0
7
5
0
30%
0
0
0%
0
0
5
12.5%
0
2
4
15%
0
0
0
4
3
14%
9
11
20
14
16
10
40
19
7
14
40
12
8
12
15
3
50
(50±3)
14
16
10
6
7
8
TOTAL
PAPER 2(150 MARKS)
Euclidean
Geometry
9
11
3
4
5
COGNITIVE LEVELS
TOTAL
12
8
12
15
3
TOTAL
20
40
40
50
150
TOTAL
89
43
18
150
%
13
27
27
33
100
%
59
29
12
100
Ideal
55
30
15
Page 1 of 14
Mathematics/P2
RBHS
September 2016
QUESTION 1
1.1
π‘₯Μ… =
π‘₯Μ… =
1.2
4+5+8+13+19+22+25+26+23+17+14+7
12
183 οƒΌ
12 οƒΌ
π‘₯Μ… = 15,25 οƒΌ
(3)R
Standard deviation: 7,59522 β‰ˆ 7,60οƒΌοƒΌ (R)
(2)R
1.3.1 Increase in mean =
(3×5)+(9×1)
12
= 2°C per month οƒΌοƒΌ
(2)R
1.3.2 Standard deviation decreases οƒΌ The maximum value increases by 1°C and the minimum
value increases by 5°C i.e the range decreases οƒΌ (new SD = 6,27).
NB they must reference range to get second mark. Esp if they write new SD
(2)C
[9]
Page 2 of 14
Mathematics/P2
RBHS
September 2016
QUESTION 2
2.1.1
Time (in min)
Frequency
11 ≀ 𝑑 < 15
15 ≀ 𝑑 < 19
19 ≀ 𝑑 < 23
23 ≀ 𝑑 < 27
27 ≀ 𝑑 < 31
6
7
15
18
2
Cumulative
frequency
6
13
28
46
48
οƒΌ
(1)R
2.1.2
οƒΌgrounded
οƒΌοƒΌplotting points at
upper limits
βˆ’1 π‘π‘’π‘Ÿ π‘šπ‘–π‘ π‘‘π‘Žπ‘˜π‘’
οƒΌ smooth curve
(4)R
2.1.3 a)
b)
median = 22οƒΌ (𝑒𝑠𝑒 π‘π‘’π‘Ÿπ‘£π‘’)
(1)R
lower quartile 18οƒΌ
(1)R
2.1.4 48 βˆ’ 37οƒΌ = 9 𝑝𝑝𝑙
(𝑒𝑠𝑒 π‘π‘’π‘Ÿπ‘£π‘’)
(𝑒𝑠𝑒 π‘π‘’π‘Ÿπ‘£π‘’)
(2)R
2.2.1 C
𝑦 = 58,28 βˆ’ 4,48π‘₯
(1)R
2.2.2 C
late-coming and success
(1)C
[11]
Page 3 of 14
Mathematics/P2
RBHS
QUESTION 3
September 2016
y
T
S
63,43º
P(-5:0)
O
R
x
3.1.1 π‘šπ‘ƒπ‘‡ = tan 63,43° οƒΌ
= 2 οƒΌ (answer only full marks)
(2)R
3.1.2 𝑦 = 2π‘₯ + 𝑐
0 = 2(βˆ’5) + 𝑐
𝑐 = 10οƒΌ (for substituting gradient and point)
𝑃𝑇: 𝑦 = 2π‘₯ + 10 οƒΌ
(2)R
3.1.3 𝑃𝑆 = √ (βˆ’5 βˆ’ 0)2 + (0 βˆ’ 10)2 οƒΌ OR
𝑃𝑆 2 = 102 + 52 οƒΌ (π‘π‘¦π‘‘β„Žπ‘Žπ‘”)
𝑃𝑆 = 5√5 οƒΌ
= 5√5οƒΌ
3.1.4 T(5; 20) οƒΌοƒΌ
3.2
(2)R
𝑃𝑂: 𝑂𝑅 = 2: 3
5 ∢ 𝑂𝑅 = 2 ∢ 3 οƒΌ
2 × π‘‚π‘… = 15
𝑂𝑅 = 7,5
𝑅 (7,5; 0) οƒΌ (answer only full marks)
3.3
(2)R
1
(2)C
1
π΄π‘Ÿπ‘’π‘Ž βˆ†π‘ƒπ‘‡π‘… = 2 × π‘ƒπ‘… × β„Ž οƒΌ = 2 × 12,5 οƒΌ × 20 οƒΌ
= 125 𝑒𝑛𝑖𝑑𝑠 2 οƒΌ
𝑢𝑹
1
π΄π‘Ÿπ‘’π‘Ž βˆ†π‘ƒπ‘‡π‘… = 2 (10√5)οƒΌ(12,5) sin 63,43° οƒΌ οƒΌ (𝑓)
= 124,99οƒΌ
(4)R
[14]
Page 4 of 14
Mathematics/P2
RBHS
September 2016
QUESTION 4
C(-1;26)
y
20
A

B(-1;1)
R

O
x
4.1
𝐡𝐢 = 26 βˆ’ 1 = 25 𝑒𝑛𝑖𝑑𝑠
𝐢𝐴̂𝐡 = 90° (π‘‘π‘Žπ‘› βŠ₯ π‘Ÿπ‘Žπ‘‘)οƒΌ
𝐴𝐡 = 15οƒΌ
(3)R
4.2
(π‘₯ + 1)2 οƒΌ + (𝑦 βˆ’ 1)2 οƒΌ = 225οƒΌ
(3)R
4.3
πœƒ = 53,13° οƒΌ
π‘šπΆπ΄ = π‘‘π‘Žπ‘› 53,13°
4
= 3 οƒΌ (or 2 marks if no theta calc)
𝑆𝑒𝑏𝑠𝑑 𝐢(βˆ’1; 26): 26 =
4
y = 3π‘₯ +
4.4
82
3
4
3
4
(βˆ’1) + 𝑐
1
οƒΌ π‘œπ‘Ÿ 𝑦 = 3 π‘₯ + 27 3
π‘œπ‘Ÿ 3𝑦 = 4π‘₯ + 82
(4)C
3
π‘šπ΄π΅ = βˆ’ 4 οƒΌ
𝑆𝑒𝑏 𝐡(βˆ’1; 1)
3
1 = βˆ’ 4 (βˆ’1) + 𝑐
3
1
y = βˆ’4π‘₯ + 4οƒΌ
4.5
3
1
βˆ’4π‘₯ + 4 =
4
3
(3)R
π‘₯+
x = -13
82
3
οƒΌ
y = 10
A(-13;10) οƒΌοƒΌ
(3)R
[16]
Page 5 of 14
Mathematics/P2
RBHS
QUESTION 5
September 2016
y
O
x
B
5.1
𝑂𝐡 = √(0 βˆ’ 2𝑝)2 + (0 + 𝑝)2 =√45 +√20οƒΌ
√4𝑝2 + 𝑝2 = 3√5 +2√5
= 5√5 οƒΌ
√5𝑝2
5𝑝
5.2
2
= 125οƒΌ
𝑝2
= 25οƒΌ
𝑝
= 5οƒΌ
(5)C
π‘₯ 2 + 4π‘₯ cos πœƒ + 4 cos2 πœƒ + 𝑦 2 + 8𝑦 sin πœƒ + 16 sin2 πœƒ = βˆ’3 + 4 cos 2 πœƒ + 16 sin2 πœƒ
(π‘₯ + 2 cos πœƒ)2 οƒΌ
+ (𝑦 + 4 sin πœƒ)2 οƒΌ = βˆ’3 + 4(1 βˆ’ sin2 πœƒ)οƒΌ + 16 sin2 πœƒ
π‘Ÿ 2 = 1 + 12 𝑠𝑖𝑛2 πœƒ
Max value of sin πœƒ = 1, so max value of 1 + 12 𝑠𝑖𝑛2 πœƒ = 13οƒΌ
Max value of π‘Ÿ = √13
(5)P
[10]
Page 6 of 14
Mathematics/P2
RBHS
September 2016
QUESTION 6
5
6.1.1 cos 2𝐴 = βˆ’ 13 οƒΌ
12
οƒΌ(quad)
sin 2𝐴 = 13
οƒΌ(values)
(3)R
13
5
12
6.1.2 cos 2𝐴 = 13
2A
5
2 cos 2 𝐴 βˆ’ 1οƒΌ = 13
-5
4
cos2 𝐴 = 13 οƒΌ
4
cos 𝐴 = √13 =
6.2
2
√13
=
2√13
13
οƒΌ
(3)R
cos 70°. cos 10° + cos 20°. cos 80°
= cos 70°. cos 10° + sin 70°οƒΌ. sin 10°οƒΌ
= cos(70° βˆ’ 10°)οƒΌ = cos 60°
1
= 2οƒΌ
(4)R
6.3.1 3 cos π‘₯ + 4 sin π‘₯
𝐿𝐻𝑆
3
4
3
= 5 (5 cos π‘₯ + 5 sin π‘₯) οƒΌ
tan 𝐡 = 4 οƒΌ 𝑝𝑖𝑐
5
= 5(sin 𝐡. cos π‘₯ + cos 𝐡. sin π‘₯) οƒΌ
B
= 5 sin(𝐡 + π‘₯)
OR
𝑅𝐻𝑆
4
= 5(sin 𝐡. cos π‘₯ + cos 𝐡. sin π‘₯) οƒΌ
3
3
οƒΌpic
4
= 5 (5 . cos π‘₯ + 5 . sin π‘₯) οƒΌ
= 3 cos π‘₯ + 4 sin π‘₯
(3)C
5
6.3.2 3 cos π‘₯ + 4 sin π‘₯ = 2
5
∴ 5 sin(𝐡 + π‘₯) = 2 οƒΌ
1
∴ sin(𝐡 + π‘₯) = 2 οƒΌ
π‘Ÿπ‘’π‘“ ∠ = 30°
3
𝐺𝑖𝑣𝑒𝑛 tan 𝐡 = 4
∴ 𝐡 = 36,87°οƒΌ
𝐡 + π‘₯ = 30° + 𝑛. 360°
𝐡 + π‘₯ = 180° βˆ’ 30° + 𝑛. 360
or
π‘₯ = βˆ’6,87° + 𝑛. 360°οƒΌ
π‘₯ = 113,13°οƒΌ + 𝑛. 360° (𝑛 ∈ 𝑍)οƒΌ
(If they don’t sub in B value max 4/6)
Page 7 of 14
(6)C
[19]
Mathematics/P2
RBHS
September 2016
QUESTION 7
7.1
π‘Ž = 30°οƒΌ
𝑏=2 οƒΌ
(2)R
7.2
βˆ’180° ≀ π‘₯ < 120°οƒΌ ; π‘₯ = βˆ’45°οƒΌ ; 60° < π‘₯ ≀ 180°οƒΌ
(3)C
7.3
𝑦 = βˆ’2οƒΌsin(π‘₯ βˆ’ 30°)οƒΌ
(2)P
[7]
Page 8 of 14
Mathematics/P2
RBHS
September 2016
QUESTION 8
A
8.1.1
h
C
B
D
π‘π‘œπ‘›π‘ π‘‘π‘Ÿπ‘’π‘π‘‘ 𝐴𝐷 βŠ₯ 𝐡𝐢
𝑙𝑒𝑑 𝐢𝐷 = π‘₯ ∴ 𝐷𝐡 = π‘Ž βˆ’ π‘₯
β„Ž2 = 𝑏 2 βˆ’ π‘₯ 2 (π‘π‘¦π‘‘β„Žπ‘Žπ‘” βˆ†π΄π΅π·)οƒΌ
β„Ž2 = 𝑐 2 βˆ’ (π‘Ž βˆ’ π‘₯ )2 (π‘π‘¦π‘‘β„Žπ‘Žπ‘” βˆ†π΄π·πΆ )οƒΌ
𝑏 2 βˆ’ π‘₯ 2 = 𝑐 2 βˆ’ (π‘Ž2 βˆ’ 2π‘Žπ‘₯ + π‘₯ 2 )
𝑏 2 = 𝑐 2 βˆ’ π‘Ž2 βˆ’ 2π‘Žπ‘₯οƒΌ
π‘₯
cos 𝐢̂ = 𝑏 ∴ π‘₯ = π‘π‘π‘œπ‘  𝐢̂ οƒΌ
𝑐 2 = π‘Ž2 + 𝑏 2 βˆ’ 2π‘Žπ‘. cos 𝐢̂
8.1.2 cos 𝐢 =
π‘Ž2 +𝑏 2 βˆ’π‘ 2
2π‘Žπ‘
Cos 𝐢 + 1 =
cos 𝐢 + 1 =
(5)R
οƒΌ
π‘Ž2 +𝑏2 βˆ’π‘ 2
2π‘Žπ‘
2π‘Žπ‘
+ 2π‘Žπ‘ οƒΌ
(π‘Ž+𝑏)2 οƒΌβˆ’π‘ 2 οƒΌ
2π‘Žπ‘
(π‘Ž+𝑏+𝑐)(π‘Ž+π‘βˆ’π‘)
1 + cos 𝐢̂ =
2π‘Žπ‘
(4)P
8.2.2. 𝐷𝐹 = 41 (π‘π‘¦π‘‘β„Žπ‘Žπ‘”)οƒΌ
G
𝐺𝐹 = 20 + 41 βˆ’ 2(20)(41) cos 15,6°οƒΌ
2
2
2
20m
𝐺𝐹 = 22,39 π‘šοƒΌ
(3)R
h
F
9m
15,6ο‚°
β„Ž
8.2.1 sin 15,6° = 20°οƒΌ
D
β„Ž = 5,38π‘šοƒΌ
40 m
E
(2)C
[14]
Page 9 of 14
Mathematics/P2
RBHS
September 2016
QUESTION 9
M
A
1
2
x
C
B
1
1
2
4
3
2
1
S4
2
3
Q
2
1
1
2
3
R
P
9.1
Statement
Reason
𝐡̂1 = π‘₯
𝐴̂1 = π‘₯
𝒕𝒂𝒏 𝒄𝒉𝒐𝒓𝒅 π’•π’‰π’†π’π’“π’†π’Ž οƒΌ
𝑃𝐴 = 𝑃𝐡
π’•π’‚π’π’ˆπ’†π’π’•π’” π’‡π’“π’π’Ž π’„π’π’Žπ’Žπ’π’ π’‘π’π’Šπ’π’•οƒΌ
Μ‚πŸ οƒΌ
𝑩
βˆ β€² 𝒔 𝒐𝒑𝒑 = π’”π’Šπ’…π’†π’” οƒΌ
=π‘₯
𝑃̂2 = π‘₯
Μ‚ οƒΌ
𝑸
βˆ β€² 𝑠 π‘œπ‘π‘ = 𝑠𝑖𝑑𝑒𝑠
π‘Žπ‘™π‘‘ βˆ β€² 𝑠 ; 𝐢𝐡||𝑃𝑄
=π‘₯
π‘π‘œπ‘Ÿπ‘Ÿπ‘’π‘ π‘  ’𝑠; 𝐢𝐡||𝑃𝑄
(5)R
9.2.1 𝐴̂1 = 𝑃̂2 𝑆 (π‘π‘Ÿπ‘œπ‘£π‘’π‘‘ π‘Žπ‘π‘œπ‘£π‘’)
βˆ΄π΄π΅π‘…π‘ƒ 𝑖𝑠 𝑐𝑦𝑐𝑙𝑖𝑐 (π‘π‘œπ‘›π‘£. βˆ β€² 𝑠 𝑖𝑛 π‘ π‘Žπ‘šπ‘’ 𝑠𝑒𝑔)𝑅
9.2.2 𝐴̂1+2 = 𝐡̂1+2 (π‘π‘Ÿπ‘œπ‘£π‘’π‘‘ π‘Žπ‘π‘œπ‘£π‘’) οƒΌ
βˆ΄π΄π‘ƒ = 𝑃𝐡 (𝑠𝑖𝑑𝑒𝑠 π‘œπ‘π‘ = βˆ β€² 𝑠) οƒΌ S/R
𝑃̂2 = 𝑄̂ (π‘π‘Ÿπ‘œπ‘£π‘’π‘‘ π‘Žπ‘π‘œπ‘£π‘’)
βˆ΄π΅π‘ƒ = 𝐡𝑄 (𝑠𝑖𝑑𝑒𝑠 π‘œπ‘π‘ = βˆ β€² 𝑠) οƒΌ S/R
βˆ΄π΄π‘ƒ = 𝐡𝑄
OR
𝑖𝑛 βˆ†π‘„π΅π‘… π‘Žπ‘›π‘‘ βˆ†π΄π‘ƒπ‘…:
1. 𝐴̂2 = 𝑄̂ = π‘₯ (π‘π‘Ÿπ‘œπ‘£π‘’π‘› π‘Žπ‘π‘œπ‘£π‘’)
2. 𝐴𝑅 = 𝑅𝑄 (𝑠𝑖𝑑𝑒𝑠 π‘œπ‘π‘ = βˆ π‘ )
3. 𝐡̂4 = 𝐴𝑃̂𝑅 (𝑒π‘₯𝑑 ∠ π‘œπ‘“ 𝑐𝑦𝑐𝑙𝑖𝑐 π‘žπ‘’π‘Žπ‘‘) οƒΌοƒΌ π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 3 (βˆ’1 π‘π‘’π‘Ÿ π‘šπ‘–π‘ π‘‘π‘Žπ‘˜π‘’)
βˆ΄βˆ†π΄π‘ƒπ‘… ≑ 𝑄𝐡𝑅 (𝐴𝐴𝑆) οƒΌ
βˆ΄π΄π‘ƒ = 𝑄𝐡
9.3
𝐴𝐢
=
𝐴𝐡
(2) R
(3)C
(π‘π‘Ÿπ‘œπ‘ π‘‘β„Žπ‘’π‘œπ‘Ÿπ‘’π‘š; 𝐢𝐡||𝑅𝑄) 𝑆 οƒΌ 𝑅
𝐴𝑅
𝐴𝑄
𝐡𝐢
𝐴𝐡
∴ 𝐴𝑅 = 𝐴𝑄
(𝐴𝐢 = 𝐡𝐢)
(2) R
[12]
Page 10 of 14
Mathematics/P2
RBHS
September 2016
QUESTION 10
10.1
π‘π‘œπ‘›π‘ π‘‘π‘Ÿπ‘’π‘π‘‘ 𝐴𝑂 π‘Žπ‘›π‘‘ 𝑒π‘₯𝑑𝑒𝑛𝑑 π‘‘π‘œ 𝐷
𝐿𝑒𝑑 𝐡𝐴̂𝑂 = π‘₯
βˆ΄π΄π΅Μ‚ 𝑂 = π‘₯ (βˆ β€² 𝑠 π‘œπ‘π‘ = 𝑠𝑖𝑑𝑒𝑠)οƒΌ
𝐿𝑒𝑑 𝐢𝐴̂𝑂 = 𝑦
∴ 𝐢𝐴̂𝑂 = 𝑦 (βˆ β€² 𝑠 π‘œπ‘π‘ = 𝑠𝑖𝑑𝑒𝑠)οƒΌ
𝐡𝑂̂𝐷 = 2π‘₯ (𝑒π‘₯𝑑 ∠ βˆ†π΅π΄π‘‚)
𝐢𝑂̂𝐷 = 2𝑦 (𝑒π‘₯𝑑 ∠ βˆ†πΆπ΄π‘‚)οƒΌ
βˆ΄π΅π‘‚Μ‚πΆ = 2π‘₯ + 2𝑦 = 2(π‘₯ + 𝑦)
= 2(𝐴̂)οƒΌ
βˆ΄π΅π‘‚Μ‚πΆ = 2 × π΅π΄Μ‚πΆ
10.2
A
O
C
B
(4)R
P
Q
2x
O
R
S
𝑃𝑂̂ 𝑅 = 180° βˆ’ 2π‘₯ (π‘π‘œπ‘–π‘›π‘‘ βˆ β€² 𝑠; 𝑃𝑄||𝑂𝑅) 𝑆/𝑅
𝑆̂ = 90° βˆ’ π‘₯ (∠ π‘Žπ‘‘ π‘π‘’π‘›π‘‘π‘Ÿπ‘’ = 2 × βˆ  π‘Žπ‘‘ π‘π‘–π‘Ÿπ‘π‘’π‘šπ‘“)𝑆/𝑅
βˆ΄π‘ƒπ‘„Μ‚ 𝑅 = 90° + π‘₯ (π‘œπ‘π‘ βˆ β€² 𝑠 𝑐𝑦𝑐𝑙𝑖𝑐 π‘žπ‘’π‘Žπ‘‘) 𝑆 𝑅
(4)R
[8]
Page 11 of 14
Mathematics/P2
RBHS
September 2016
QUESTION 11
P
Given: 𝑃𝑄 = 30 units
𝑄𝑅 = 20 units
𝑃𝑅 = 40 units
𝑄𝑆 = 10 units
𝑅𝑆 = 15 units
40
30
20
Q
10
11.1
𝑃𝑄
𝑆𝑄
𝑃𝑅
3.
11.2
11.3
30
𝑅𝑆
𝑄𝑅
2.
15
S
In βˆ†π‘ƒπ‘„π‘… π‘Žπ‘›π‘‘ βˆ†π‘…π‘†π‘„:
1.
R
𝑅𝑄
= 15 = 2
20
= 10 = 2
=
40
20
=2
οƒΌοƒΌ (S)
βˆ΄βˆ†π‘ƒπ‘„π‘…|||βˆ†π‘…π‘†π‘„ (𝑠𝑖𝑑𝑒𝑠 π‘œπ‘“ βˆ† 𝑖𝑛 π‘π‘Ÿπ‘œπ‘)οƒΌ 𝑅
(3)R
𝑃𝑅̂ 𝑄 = 𝑅𝑄̂ 𝑆 (βˆ†π‘ƒπ‘„π‘…|||βˆ†π‘…π‘†π‘„)οƒΌ 𝑆
∴ 𝑄𝑆||𝑃𝑅 (π‘Žπ‘™π‘‘ βˆ β€² 𝑠 =)οƒΌ 𝑅
(2)R
In βˆ†π‘„π‘‹π‘† and βˆ†π‘ƒπ‘‹π‘…:
1.
𝑄𝑋𝑆 = 𝑃𝑋𝑅 (π‘£π‘’π‘Ÿπ‘‘ π‘œπ‘π‘ βˆ β€² 𝑠 =)οƒΌ 𝑆
2.
𝑄𝑆𝑋 = 𝑋𝑃𝑅 (π‘Žπ‘™π‘‘ βˆ β€² 𝑠; 𝑄𝑆||𝑃𝑅)οƒΌS
∴ βˆ†π‘„π‘‹π‘†|||βˆ†π‘ƒπ‘‹π‘… (𝐴𝐴𝐴)οƒΌ 𝑅
𝑄𝑋
𝑄𝑆
βˆ΄π‘…π‘‹ = 𝑅𝑃 (∴ βˆ†π‘„π‘‹π‘†|||βˆ†π‘ƒπ‘‹π‘…)
𝑄𝑋
10
∴20βˆ’π‘„π‘‹ = 40 οƒΌ S
βˆ΄π‘„π‘‹ = 4οƒΌ 𝑆
11.4
(5)C
βˆ†π‘ƒπ‘„π‘…: βˆ†π‘„π‘†π‘… = 4: 1 οƒΌ 𝑆
π‘Žπ‘Ÿπ‘’π‘Ž βˆ†π‘ƒπ‘„π‘…
π‘Žπ‘Ÿπ‘’π‘Ž 𝑃𝑄𝑆𝑅
4
=5 𝑆
(2)C
[12]
Page 12 of 14
Mathematics/P2
RBHS
September 2016
C
QUESTION 12
B
12.1
5
T
x
3
A
12.1.1
12.1.2
D
In βˆ†π΄π΅π‘‡ and βˆ†πΆπ·π‘‡
1.
𝐡𝑇̂𝐴 = 𝐷𝑇̂𝐢 (π‘£π‘’π‘Ÿπ‘‘ π‘œπ‘π‘ βˆ β€² 𝑠 =)οƒΌ 𝑆
Μ‚ 𝐢 (π‘Žπ‘™π‘‘βˆ β€² 𝑠; 𝐴𝐡||𝐷𝐢)οƒΌ 𝑆
2.
𝐴𝐡̂ 𝑇 = 𝑇𝐷
∴ βˆ†π΄π΅π‘‡|||βˆ†πΆπ·π‘‡ (𝐴𝐴𝐴)οƒΌ 𝑅
(3)R
𝐴𝐡 𝑖𝑠 π‘Ž π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ (π‘π‘œπ‘›π‘£. βˆ β€² 𝑠 𝑖𝑛 π‘ π‘’π‘šπ‘– π‘π‘–π‘Ÿπ‘π‘™π‘’) οƒΌS οƒΌR
𝐴𝐡
𝐴𝑇
= 𝐢𝑇 (βˆ†π΄π΅π‘‡|||βˆ†πΆπ·π‘‡)
𝐢𝐷
𝐴𝐡
3
οƒΌ 𝑆
∴π‘₯ =5
3
𝐴𝐡 = 5 π‘₯
3
𝑆
π‘Ÿ = 10 π‘₯
3
π΄π‘Ÿπ‘’π‘Ž = πœ‹ (10 π‘₯)
2
9
π΄π‘Ÿπ‘’π‘Ž = 100 πœ‹π‘₯ 2 𝑒𝑛𝑖𝑑𝑠 2
οƒΌS
(5)C
P
12.2
R
Q
12.2.1
12.2.2
𝐿𝑒𝑑 𝑃̂ = π‘₯
∴ π‘₯ + 4π‘₯ + 4π‘₯ = 180° οƒΌ 𝑆 (∠ π‘ π‘’π‘š π‘œπ‘“ βˆ†)οƒΌ 𝑅
𝑃̂ = 20° οƒΌ 𝑆
(3)R
𝑄𝑂̂𝑅 = 40° οƒΌ 𝑆 (βˆ π‘Žπ‘‘ π‘π‘’π‘›π‘‘π‘Ÿπ‘’ = 2 × βˆ π‘Žπ‘‘ π‘π‘–π‘Ÿπ‘π‘’π‘šπ‘“π‘’π‘Ÿπ‘’π‘›π‘π‘’)οƒΌ 𝑅
360°
(βˆ β€² 𝑠 π‘Žπ‘Ÿπ‘œπ‘’π‘›π‘‘ π‘Ž π‘π‘œπ‘–π‘›π‘‘)οƒΌ 𝑆/𝑅
𝑛=
40°
𝑛 =9𝑆
(4)P
[15]
Page 13 of 14
Mathematics/P2
RBHS
September 2016
QUESTION 13
A
x y
B
x
a
M
N
P
C
ab
b
y D
πΆπ‘œπ‘›π‘ π‘‘π‘Ÿπ‘’π‘π‘‘ π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘π‘  π‘Žπ‘‘ π‘Žπ‘™π‘™ π‘π‘œπ‘–π‘›π‘‘π‘  π‘œπ‘“ π‘π‘œπ‘›π‘‘π‘Žπ‘π‘‘, π‘™π‘Žπ‘π‘’π‘™ π‘π‘œπ‘–π‘›π‘‘π‘  𝑀, 𝑁 π‘Žπ‘›π‘‘ 𝑃 π‘Žπ‘  π‘π‘’π‘Ÿ π‘‘π‘–π‘Žπ‘”π‘Ÿπ‘Žπ‘š
𝑀𝐡 = 𝑀𝐴 (π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘π‘  π‘“π‘Ÿπ‘œπ‘š π‘π‘œπ‘šπ‘šπ‘œπ‘› π‘π‘œπ‘–π‘›π‘‘)
𝑁𝐡 = 𝑁𝐢 (π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘π‘  π‘“π‘Ÿπ‘œπ‘š π‘π‘œπ‘šπ‘šπ‘œπ‘› π‘π‘œπ‘–π‘›π‘‘)
𝑃𝐢 = 𝑃𝐷 (π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘π‘  π‘“π‘Ÿπ‘œπ‘š π‘π‘œπ‘šπ‘šπ‘œπ‘› π‘π‘œπ‘–π‘›π‘‘) οƒΌ
∴ π‘π‘Žπ‘ π‘’ π‘Žπ‘›π‘”π‘™π‘’π‘  π‘œπ‘“ π‘Žπ‘™π‘™ π‘Ÿπ‘’π‘™π‘’π‘£π‘Žπ‘›π‘‘ π‘‘π‘Ÿπ‘–π‘Žπ‘›π‘”π‘™π‘’π‘  π‘Žπ‘Ÿπ‘’ π‘’π‘žπ‘’π‘Žπ‘™ οƒΌ (βˆ β€² 𝑠 π‘œπ‘π‘ = 𝑠𝑖𝑑𝑒𝑠)
𝑠𝑒𝑒 π‘‘π‘–π‘Žπ‘”π‘Ÿπ‘Žπ‘š.
2π‘₯ + 2𝑦 + 2π‘Ž + 2𝑏 = 360° (βˆ π‘ π‘’π‘š 𝑖𝑛 π‘žπ‘’π‘Žπ‘‘ 𝐴𝐡𝐢𝐷) οƒΌ
∴ π‘₯ + 𝑦 + π‘Ž + 𝑏 = 180°
𝐴̂ + 𝐢̂ = π‘₯ + 𝑦 + π‘Ž + 𝑏 = 180°
∴𝐴𝐡𝐢𝐷 𝑖𝑠 𝑐𝑦𝑐𝑙𝑖𝑐 (π‘π‘œπ‘›π‘£. π‘œπ‘π‘ βˆ β€² 𝑠 𝑐𝑦𝑐𝑙𝑖𝑐 π‘žπ‘’π‘Žπ‘‘)
[3]P
[TOTAL 150]
Page 14 of 14