Mathematics/P2 RBHS September 2016 Gr 12 Mathematics September Paper 2 MEMORANDUM GRADE 12 Sept Paper 2 2016 MARK DISTRIBUTION PAPER 2(150 MARKS) Q Data Handling (20±3) 1 2 Analytical Geometry (40±3) Trigonometry (40±3) 19 7 14 9 10 11 12 13 150 QUESTIONS Routine procedures(35%) Complex procedures(30%) Problem Solving(15%) 150 9 11 20 14 16 10 40 19 7 14 40 12 8 12 15 3 50 1 2 DH 3 4 5 Analyt 6 7 8 Trig 9 10 11 12 12 Euclid 7 10 85% 12 12 0 60% 10 2 8 50% 9 8 5 6 0 56% 2 1 15% 2 4 5 27.5% 9 3 2 35% 3 0 7 5 0 30% 0 0 0% 0 0 5 12.5% 0 2 4 15% 0 0 0 4 3 14% 9 11 20 14 16 10 40 19 7 14 40 12 8 12 15 3 50 (50±3) 14 16 10 6 7 8 TOTAL PAPER 2(150 MARKS) Euclidean Geometry 9 11 3 4 5 COGNITIVE LEVELS TOTAL 12 8 12 15 3 TOTAL 20 40 40 50 150 TOTAL 89 43 18 150 % 13 27 27 33 100 % 59 29 12 100 Ideal 55 30 15 Page 1 of 14 Mathematics/P2 RBHS September 2016 QUESTION 1 1.1 π₯Μ = π₯Μ = 1.2 4+5+8+13+19+22+25+26+23+17+14+7 12 183 οΌ 12 οΌ π₯Μ = 15,25 οΌ (3)R Standard deviation: 7,59522 β 7,60οΌοΌ (R) (2)R 1.3.1 Increase in mean = (3×5)+(9×1) 12 = 2°C per month οΌοΌ (2)R 1.3.2 Standard deviation decreases οΌ The maximum value increases by 1°C and the minimum value increases by 5°C i.e the range decreases οΌ (new SD = 6,27). NB they must reference range to get second mark. Esp if they write new SD (2)C [9] Page 2 of 14 Mathematics/P2 RBHS September 2016 QUESTION 2 2.1.1 Time (in min) Frequency 11 β€ π‘ < 15 15 β€ π‘ < 19 19 β€ π‘ < 23 23 β€ π‘ < 27 27 β€ π‘ < 31 6 7 15 18 2 Cumulative frequency 6 13 28 46 48 οΌ (1)R 2.1.2 οΌgrounded οΌοΌplotting points at upper limits β1 πππ πππ π‘πππ οΌ smooth curve (4)R 2.1.3 a) b) median = 22οΌ (π’π π ππ’ππ£π) (1)R lower quartile 18οΌ (1)R 2.1.4 48 β 37οΌ = 9 ππποΌ (π’π π ππ’ππ£π) (π’π π ππ’ππ£π) (2)R 2.2.1 CοΌ π¦ = 58,28 β 4,48π₯ (1)R 2.2.2 CοΌ late-coming and success (1)C [11] Page 3 of 14 Mathematics/P2 RBHS QUESTION 3 September 2016 y T S 63,43º P(-5:0) O R x 3.1.1 πππ = tan 63,43° οΌ = 2 οΌ (answer only full marks) (2)R 3.1.2 π¦ = 2π₯ + π 0 = 2(β5) + π π = 10οΌ (for substituting gradient and point) ππ: π¦ = 2π₯ + 10 οΌ (2)R 3.1.3 ππ = β (β5 β 0)2 + (0 β 10)2 οΌ OR ππ 2 = 102 + 52 οΌ (ππ¦π‘βππ) ππ = 5β5 οΌ = 5β5οΌ 3.1.4 T(5; 20) οΌοΌ 3.2 (2)R ππ: ππ = 2: 3 5 βΆ ππ = 2 βΆ 3 οΌ 2 × ππ = 15 ππ = 7,5 π (7,5; 0) οΌ (answer only full marks) 3.3 (2)R 1 (2)C 1 π΄πππ βπππ = 2 × ππ × β οΌ = 2 × 12,5 οΌ × 20 οΌ = 125 π’πππ‘π 2 οΌ πΆπΉ 1 π΄πππ βπππ = 2 (10β5)οΌ(12,5) sin 63,43° οΌ οΌ (π) = 124,99οΌ (4)R [14] Page 4 of 14 Mathematics/P2 RBHS September 2016 QUESTION 4 C(-1;26) y 20 A ο± B(-1;1) R ο± O x 4.1 π΅πΆ = 26 β 1 = 25 π’πππ‘π οΌ πΆπ΄Μπ΅ = 90° (π‘ππ β₯ πππ)οΌ π΄π΅ = 15οΌ (3)R 4.2 (π₯ + 1)2 οΌ + (π¦ β 1)2 οΌ = 225οΌ (3)R 4.3 π = 53,13° οΌ ππΆπ΄ = π‘ππ 53,13° 4 = 3 οΌ (or 2 marks if no theta calc) ππ’ππ π‘ πΆ(β1; 26): 26 = 4 y = 3π₯ + 4.4 82 3 4 3 4 (β1) + ποΌ 1 οΌ ππ π¦ = 3 π₯ + 27 3 ππ 3π¦ = 4π₯ + 82 (4)C 3 ππ΄π΅ = β 4 οΌ ππ’π π΅(β1; 1) 3 1 = β 4 (β1) + ποΌ 3 1 y = β4π₯ + 4οΌ 4.5 3 1 β4π₯ + 4 = 4 3 (3)R π₯+ x = -13 82 3 οΌ y = 10 A(-13;10) οΌοΌ (3)R [16] Page 5 of 14 Mathematics/P2 RBHS QUESTION 5 September 2016 y O x B 5.1 ππ΅ = β(0 β 2π)2 + (0 + π)2 =β45 +β20οΌ β4π2 + π2 = 3β5 +2β5 = 5β5 οΌ β5π2 5π 5.2 2 = 125οΌ π2 = 25οΌ π = 5οΌ (5)C π₯ 2 + 4π₯ cos π + 4 cos2 π + π¦ 2 + 8π¦ sin π + 16 sin2 π = β3 + 4 cos 2 π + 16 sin2 π (π₯ + 2 cos π)2 οΌ + (π¦ + 4 sin π)2 οΌ = β3 + 4(1 β sin2 π)οΌ + 16 sin2 π π 2 = 1 + 12 π ππ2 π Max value of sin π = 1, so max value of 1 + 12 π ππ2 π = 13οΌ Max value of π = β13 (5)P [10] Page 6 of 14 Mathematics/P2 RBHS September 2016 QUESTION 6 5 6.1.1 cos 2π΄ = β 13 οΌ 12 οΌ(quad) sin 2π΄ = 13 οΌ(values) (3)R 13 5 12 6.1.2 cos 2π΄ = 13 2A 5 2 cos 2 π΄ β 1οΌ = 13 -5 4 cos2 π΄ = 13 οΌ 4 cos π΄ = β13 = 6.2 2 β13 = 2β13 13 οΌ (3)R cos 70°. cos 10° + cos 20°. cos 80° = cos 70°. cos 10° + sin 70°οΌ. sin 10°οΌ = cos(70° β 10°)οΌ = cos 60° 1 = 2οΌ (4)R 6.3.1 3 cos π₯ + 4 sin π₯ πΏπ»π 3 4 3 = 5 (5 cos π₯ + 5 sin π₯) οΌ tan π΅ = 4 οΌ πππ 5 = 5(sin π΅. cos π₯ + cos π΅. sin π₯) οΌ B = 5 sin(π΅ + π₯) OR π π»π 4 = 5(sin π΅. cos π₯ + cos π΅. sin π₯) οΌ 3 3 οΌpic 4 = 5 (5 . cos π₯ + 5 . sin π₯) οΌ = 3 cos π₯ + 4 sin π₯ (3)C 5 6.3.2 3 cos π₯ + 4 sin π₯ = 2 5 β΄ 5 sin(π΅ + π₯) = 2 οΌ 1 β΄ sin(π΅ + π₯) = 2 οΌ πππ β = 30° 3 πΊππ£ππ tan π΅ = 4 β΄ π΅ = 36,87°οΌ π΅ + π₯ = 30° + π. 360° π΅ + π₯ = 180° β 30° + π. 360 or π₯ = β6,87° + π. 360°οΌ π₯ = 113,13°οΌ + π. 360° (π β π)οΌ (If they donβt sub in B value max 4/6) Page 7 of 14 (6)C [19] Mathematics/P2 RBHS September 2016 QUESTION 7 7.1 π = 30°οΌ π=2 οΌ (2)R 7.2 β180° β€ π₯ < 120°οΌ ; π₯ = β45°οΌ ; 60° < π₯ β€ 180°οΌ (3)C 7.3 π¦ = β2οΌsin(π₯ β 30°)οΌ (2)P [7] Page 8 of 14 Mathematics/P2 RBHS September 2016 QUESTION 8 A 8.1.1 h C B D ππππ π‘ππ’ππ‘ π΄π· β₯ π΅πΆοΌ πππ‘ πΆπ· = π₯ β΄ π·π΅ = π β π₯ β2 = π 2 β π₯ 2 (ππ¦π‘βππ βπ΄π΅π·)οΌ β2 = π 2 β (π β π₯ )2 (ππ¦π‘βππ βπ΄π·πΆ )οΌ π 2 β π₯ 2 = π 2 β (π2 β 2ππ₯ + π₯ 2 ) π 2 = π 2 β π2 β 2ππ₯οΌ π₯ cos πΆΜ = π β΄ π₯ = ππππ πΆΜ οΌ π 2 = π2 + π 2 β 2ππ. cos πΆΜ 8.1.2 cos πΆ = π2 +π 2 βπ 2 2ππ Cos πΆ + 1 = cos πΆ + 1 = (5)R οΌ π2 +π2 βπ 2 2ππ 2ππ + 2ππ οΌ (π+π)2 οΌβπ 2 οΌ 2ππ (π+π+π)(π+πβπ) 1 + cos πΆΜ = 2ππ (4)P 8.2.2. π·πΉ = 41 (ππ¦π‘βππ)οΌ G πΊπΉ = 20 + 41 β 2(20)(41) cos 15,6°οΌ 2 2 2 20m πΊπΉ = 22,39 ποΌ (3)R h F 9m 15,6ο° β 8.2.1 sin 15,6° = 20°οΌ D β = 5,38ποΌ 40 m E (2)C [14] Page 9 of 14 Mathematics/P2 RBHS September 2016 QUESTION 9 M A 1 2 x C B 1 1 2 4 3 2 1 S4 2 3 Q 2 1 1 2 3 R P 9.1 Statement Reason π΅Μ1 = π₯ π΄Μ1 = π₯ πππ πππππ πππππππ οΌ ππ΄ = ππ΅ ππππππππ ππππ ππππππ ππππποΌ Μπ οΌ π© β β² π πππ = πππ ππ οΌ =π₯ πΜ2 = π₯ Μ οΌ πΈ β β² π πππ = π ππππ πππ‘ β β² π ; πΆπ΅||ππ =π₯ ππππππ π ο βπ ; πΆπ΅||ππ (5)R 9.2.1 π΄Μ1 = πΜ2 οΌπ (ππππ£ππ ππππ£π) β΄π΄π΅π π ππ ππ¦ππππ (ππππ£. β β² π ππ π πππ π ππ)οΌπ 9.2.2 π΄Μ1+2 = π΅Μ1+2 (ππππ£ππ ππππ£π) οΌ β΄π΄π = ππ΅ (π ππππ πππ = β β² π ) οΌ S/R πΜ2 = πΜ (ππππ£ππ ππππ£π) β΄π΅π = π΅π (π ππππ πππ = β β² π ) οΌ S/R β΄π΄π = π΅π OR ππ βππ΅π πππ βπ΄ππ : 1. π΄Μ2 = πΜ = π₯ (ππππ£ππ ππππ£π) 2. π΄π = π π (π ππππ πππ = β π ) 3. π΅Μ4 = π΄πΜπ (ππ₯π‘ β ππ ππ¦ππππ ππ’ππ) οΌοΌ πππ πππ 3 (β1 πππ πππ π‘πππ) β΄βπ΄ππ β‘ ππ΅π (π΄π΄π) οΌ β΄π΄π = ππ΅ 9.3 π΄πΆ = π΄π΅ (2) R (3)C (ππππ π‘βπππππ; πΆπ΅||π π) οΌπ οΌ π π΄π π΄π π΅πΆ π΄π΅ β΄ π΄π = π΄π (π΄πΆ = π΅πΆ) (2) R [12] Page 10 of 14 Mathematics/P2 RBHS September 2016 QUESTION 10 10.1 ππππ π‘ππ’ππ‘ π΄π πππ ππ₯π‘πππ π‘π π· πΏππ‘ π΅π΄Μπ = π₯ β΄π΄π΅Μ π = π₯ (β β² π πππ = π ππππ )οΌ πΏππ‘ πΆπ΄Μπ = π¦ β΄ πΆπ΄Μπ = π¦ (β β² π πππ = π ππππ )οΌ π΅πΜπ· = 2π₯ (ππ₯π‘ β βπ΅π΄π) πΆπΜπ· = 2π¦ (ππ₯π‘ β βπΆπ΄π)οΌ β΄π΅πΜπΆ = 2π₯ + 2π¦ = 2(π₯ + π¦) = 2(π΄Μ)οΌ β΄π΅πΜπΆ = 2 × π΅π΄ΜπΆ 10.2 A O C B (4)R P Q 2x O R S ππΜ π = 180° β 2π₯ (πππππ‘ β β² π ; ππ||ππ ) οΌπ/π πΜ = 90° β π₯ (β ππ‘ ππππ‘ππ = 2 × β ππ‘ πππππ’ππ)οΌπ/π β΄ππΜ π = 90° + π₯ (πππ β β² π ππ¦ππππ ππ’ππ) οΌπ οΌπ (4)R [8] Page 11 of 14 Mathematics/P2 RBHS September 2016 QUESTION 11 P Given: ππ = 30 units ππ = 20 units ππ = 40 units ππ = 10 units π π = 15 units 40 30 20 Q 10 11.1 ππ ππ ππ 3. 11.2 11.3 30 π π ππ 2. 15 S In βπππ πππ βπ ππ: 1. R π π = 15 = 2 20 = 10 = 2 = 40 20 =2 οΌοΌ (S) β΄βπππ |||βπ ππ (π ππππ ππ β ππ ππππ)οΌ π (3)R ππ Μ π = π πΜ π (βπππ |||βπ ππ)οΌ π β΄ ππ||ππ (πππ‘ β β² π =)οΌ π (2)R In βπππ and βπππ : 1. πππ = πππ (π£πππ‘ πππ β β² π =)οΌ π 2. πππ = πππ (πππ‘ β β² π ; ππ||ππ )οΌS β΄ βπππ|||βπππ (π΄π΄π΄)οΌ π ππ ππ β΄π π = π π (β΄ βπππ|||βπππ ) ππ 10 β΄20βππ = 40 οΌ S β΄ππ = 4οΌ π 11.4 (5)C βπππ : βπππ = 4: 1 οΌ π ππππ βπππ ππππ ππππ 4 =5 οΌπ (2)C [12] Page 12 of 14 Mathematics/P2 RBHS September 2016 C QUESTION 12 B 12.1 5 T x 3 A 12.1.1 12.1.2 D In βπ΄π΅π and βπΆπ·π 1. π΅πΜπ΄ = π·πΜπΆ (π£πππ‘ πππ β β² π =)οΌ π Μ πΆ (πππ‘β β² π ; π΄π΅||π·πΆ)οΌ π 2. π΄π΅Μ π = ππ· β΄ βπ΄π΅π|||βπΆπ·π (π΄π΄π΄)οΌ π (3)R π΄π΅ ππ π ππππππ‘ππ (ππππ£. β β² π ππ π πππ ππππππ) οΌS οΌR π΄π΅ π΄π = πΆπ (βπ΄π΅π|||βπΆπ·π) πΆπ· π΄π΅ 3 οΌ π β΄π₯ =5 3 π΄π΅ = 5 π₯ 3 οΌπ π = 10 π₯ 3 π΄πππ = π (10 π₯) 2 9 π΄πππ = 100 ππ₯ 2 π’πππ‘π 2 οΌS (5)C P 12.2 R Q 12.2.1 12.2.2 πΏππ‘ πΜ = π₯ β΄ π₯ + 4π₯ + 4π₯ = 180° οΌ π (β π π’π ππ β)οΌ π πΜ = 20° οΌ π (3)R ππΜπ = 40° οΌ π (β ππ‘ ππππ‘ππ = 2 × β ππ‘ πππππ’ππππππππ)οΌ π 360° (β β² π ππππ’ππ π πππππ‘)οΌ π/π π= 40° π =9οΌπ (4)P [15] Page 13 of 14 Mathematics/P2 RBHS September 2016 QUESTION 13 A x y B x a M N P C ab b y D πΆπππ π‘ππ’ππ‘ π‘ππππππ‘π ππ‘ πππ πππππ‘π ππ ππππ‘πππ‘, πππππ πππππ‘π π, π πππ π ππ πππ πππππππ ππ΅ = ππ΄ (π‘ππππππ‘π ππππ ππππππ πππππ‘) ππ΅ = ππΆ (π‘ππππππ‘π ππππ ππππππ πππππ‘) ππΆ = ππ· (π‘ππππππ‘π ππππ ππππππ πππππ‘) οΌ β΄ πππ π ππππππ ππ πππ πππππ£πππ‘ π‘ππππππππ πππ πππ’ππ οΌ (β β² π πππ = π ππππ ) π ππ πππππππ. 2π₯ + 2π¦ + 2π + 2π = 360° (β π π’π ππ ππ’ππ π΄π΅πΆπ·) οΌ β΄ π₯ + π¦ + π + π = 180° π΄Μ + πΆΜ = π₯ + π¦ + π + π = 180° β΄π΄π΅πΆπ· ππ ππ¦ππππ (ππππ£. πππ β β² π ππ¦ππππ ππ’ππ) [3]P [TOTAL 150] Page 14 of 14
© Copyright 2026 Paperzz