Supplementary Material METHODS DAPC analysis details The first step consists of a principal components analysis in which uncorrelated principal components are obtained from the original multilocus dataset and are then used in a discriminant analysis in the second step. The R (R Development Core Team 2012) package ‘adegenet’ (Jombart 2008) was used to perform DAPC and obtain posterior probabilities of assignment of individuals to clusters obtained using K-means clustering. To determine the optimal number of clusters, the Bayesian information criterion (BIC) was plotted against the number of clusters. The point at which the rate of change in the BIC or the distance between points becomes trivial is the optimum number of clusters. We used a subset of principal components that captured approximately 95% of the variation in the original multilocus dataset for the discriminant analysis step of the DAPC. Dispersal and migration analyses details FST, mAIc, and relatedness are expected to be smaller, while vAIc is expected to be higher, in the sex with the higher dispersal rate. AIc values average zero within a population, and individuals with a negative value are more likely to be dispersers than individuals with positive AIc values (Goudet et al. 2002). Thus, corrected assignment indices (AIc) of each individual were computed following Goudet et al. (2002), and variance of AIc values between the sexes was also compared using an F-ratio test under the hypothesis that variance should be higher for the sex displaying higher dispersal (Goudet et al. 2002). Statistical significance of FST, mAIc, vAIc, and relatedness values were tested with 10,000 permutations. Calculations were performed with both female and male selected as the philopatric sex, in both one-sided and two-sided tests. We used both types of test despite a one-sided test being appropriate for this species (rodents tend to display female philopatry with male dispersal (Calhoun 1962)) because the two-sided test is also appropriate for individuals sampled from a disturbed urban environment and in a small geographic area (Gardner-Santana et al. 2009). NC estimation details For every locus, the number of observed genotypes was lower than the number of expected genotypes. The highest expected-toobserved ratio (greater than 1), selected among all the loci, was multiplied by NE to give preliminary NC values. This calculation connects the observed pattern of variation in reproductive success summarized in NE to a hypothetical pattern of no difference in reproductive success, which would be equivalent to NC, under the assumption of random mating and non-overlapping generations. We calculated the distribution in NC values, which might arise from slight differences in reproductive success resulting in the same genotypic combinations (due to the genotypes of the breeding parents), as they would if there was no difference in reproductive success, using a Bayesian method (Petit and Valiere 2006) adapted from Gazey and Staley (1986) using an R software script. This method applies to a sampling scheme with replacement (non-invasive genetic sampling), but was adapted to our sampling scheme without replacement by carrying out resampling, with 100,000 replications, of a population of size NC, using a sample size equal to the number of individuals we analyzed. This was done to obtain an estimate of the number of samples from which the number of uniquely genotyped individuals (i.e., number of individuals analyzed) would have been obtained.Giraudeau F, Apiou F, Amarger V et al. (1999) Linkage and physical mapping of rat microsatellites derived from minisatellite loci. Mammalian Genome, 10, 405–409. Jacob HJ, Brown DM, Bunker RK et al. (1995) A genetic linkage map of the laboratory rat, Rattus norvegicus. Nature Genetics, 9, 63–69. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24, 1403–1405. R Development Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.TABLES AND FIGURES Table S1. Pairwise geographic distance in meters between sites in Salvador, Brazil. On average sites are 2.7 km apart, but most sites are between 300 m and 1.7 km apart. Site PL1(V1) PL2(V2) PL6(V4) PL7(V4) PL8(V2) PL9(V3) SA3(V5) SA4(V6) SJ5(V7) 393 812 640 592 678 1,580 1,655 8,442 PL1(V1) 500 375 370 333 1,617 1,653 8,671 PL2(V2) 317 425 263 1,682 1,598 8,892 PL6(V4) 79 431 1,359 1,330 8,920 PL7(V4) 488 1,313 1,293 8,950 PL8(V2) 1,800 1,774 8,657 PL9(V3) 296 10,073 SA3(V5) 10,124 SA4(V6) SJ5(V7) Table S2. Locus information with bold names representing the final loci selected for analyses. Locus name is provided in the first column followed by the reference, the size of the locus in base pairs (bp; with allele ranges provided when available). Loci referenced as “non-referenced by Robertson and Gemmell 2004” were used in the 2004 publication without an original source cited. The fourth columns list the paired locus for multiplex analyses (Multiplex Partner) The The last three columns report the DNA sequence of the Forward (F-Primer) and reverse (R-primer) primers used for the PCR amplifications and the fluorescent dye used to label each locus (Label). Locus Source Size (bp) D6Wox1 D3Mit13 D1Cebr3 D6Wox2 D3Wox12 D10Mit5 D4Cebr2 D4Wox7 D5Cebr1 D11Cebr1 D12Wox1 D15Rat77 D10Rat20 D20Rat46 D16Rat81 D3Rat183 D3Cebr3 D11Mgh5 D2Mit14 D8Mgh7 D1Wox23 D6Cebr1 D19Wox11 D2Wox27 D17Rat115 D12Rat76 D5Rat33 D8Rat123 D7Rat97 D2Rat185 Heiberg et al. 2006 Jacob et al. 1995 Giraudeau et al. 1999 Heiberg et al. 2006 Heiberg et al. 2006 Jacob et al. 1995 Giraudeau et al. 1999 Heiberg et al. 2006 Giraudeau et al. 1999 Giraudeau et al. 1999 Heiberg et al. 2006 Jacob et al. 1995 Jacob et al. 1995 Jacob et al. 1995 Jacob et al. 1995 non-referenced by Robertson and Gemmell 2004 Giraudeau et al. 1999 Jacob et al. 1995 Jacob et al. 1995 Jacob et al. 1995 Heiberg et al. 2006 Giraudeau et al. 1999 Heiberg et al. 2006 Heiberg et al. 2006 non-referenced by Robertson and Gemmell 2004 Jacob et al. 1995 non-referenced by Robertson and Gemmell 2004 non-referenced by Robertson and Gemmell 2004 non-referenced by Robertson and Gemmell 2004 non-referenced by Robertson and Gemmell 2004 86 98 101 102 125 140 143 146 235 263 401 449 102-120 140-174 148-160 161-173 167 230-250 88-102 191 198 223 230 234 191-235 87-105 111-136 198-208 172-186 170-192 Multiplex Partner D8Mgh7 D1Wox23 D6Cebr1 D19Wox11 unpaired D17Rat115 D7Rat97 D12Rat76 unpaired D6Wox2 D3Wox12 D10Mit5 D4Cebr2 D5Cebr1 D20Rat46 D12Wox1* D10Rat20 F-primer R-primer Label GCTTCTCATGAAAAGGAAGG TCCTCTTAGTAAAATTGCACGC CTTGGGAGCTGGGAGTGT CCAGTCCATACTTATCCATCTG TATAGTAAGTTCGAGGCCGG TGCTGGGTGAACCAGAGAG TGTCAAAGAAAGCCAGTAAAAC GATAGCATAAAATCCCTAGAGGTT AACCGCCTGTATTTCTATTTC TCTTGGGGATACACGGACT GACATTAAGGGGTCTTCCTAAG CATGTGGGGAAAGCATTACC AGTGATTGCCATACCTGCCT AAGTACTGAGTGGGCTGCGT GAGCCTTAGCACAGTGGCTT GGTCAATGGTGTTTTGACTGAA CAGGGAATGCAGAAGATACAG CAGCTCTAATTCCAGAAAGGTTT AGACCTGGGACAGGGTCCT TGAAGAGATTTTACTGGGTAGCTCC TCTGACCCATACTTGTACTTTGC TGGTTTGGTTGGGGAGAA CTACCCACCCATCTATTCATCC GATAATTGACATGTCCAGTTCC TGGAGTTGGACTGGGAATTC TGCCTTTTAAAATGATGTGCA TGGAGAAAAGAAGAACCTCCA ACACAGGGGAGCAGCTAGTG CAAGTTTTCCTCTGCCCAAG TGTTTCCTTCTGATTGGAGTTG GGGGTGGTCCTTTTCCTT TCAGCCCTTCTCCTGTCTA GAAGGCTGAGGTATGAAGACTG CATTTAGATAGGTGATAGATTCAG AGGGGACCAGTGAGACTCAC CTGCCCTCCAAACCACC GTTTCCAGCACCCATGTCC TCGATTTATCTGAAACCATCAC GCCCAAGTTTGATCCTCAG GGCCAATCAGTGTAGACAAAT TATCTTTGCAACGCTGAGG ACAGAGGGAACCCATCACAG GAAATGGCCAGGATAAACCA GGCAAAACACCAATGCCTAT GGCCCACATGTGCATGTATA AAGGAGAAGGAAGATGGGGA GTGGCTTTAGGACTCTGGAG GAATCGATTGACAGATGTCTGTG ATGAGAGGTCAAAGCTTCTCA TGGACCAGGCAAGTTCTCTT AATTTCTGCCTCTTTTTCTCAG GTGCTGTCAGGGAAAGATGTA GTTTCCAGCACCCATGTCC CTGGCTGATGGTAGGATGAG TCACTCTTTCTGCAAATTTGCTAT ATTGGCAATGCACTCATGTG GTGCCCTCAGACTGAACTC CTTTGAACAGAGCAGCCTGG GCTGTCATTCCACTGGGTTT TGAAACAGAAAAGACAAAGGACA FAM FAM FAM FAM FAM FAM FAM FAM FAM FAM FAM FAM FAM FAM FAM FAM HEX HEX HEX HEX HEX HEX HEX HEX HEX HEX HEX HEX HEX HEX *removed from dataset for final analyses Table S3. AMOVA results by sampling year for all rat samples (temporal structure). Source of variation Variance component % of variation p-value Among groups (sampling times) Va = -0.02 -0.48 0.66 Among sites within groups (sites) Vb = 0.43 9.76 0.00 Within sites (individuals) Vc = 4.01 90.72 0.00 Table S4. Population pairwise Fst values with samples temporally separated. Non-significant values are in bold. *Comparisons between the same site at two different years. Site PL1_2010 (V1) PL1_2011 (V1) PL2_2010 (V2) PL2_2011 (V2) PL6_2010 (V4) PL6_2011 (V4) PL7_2010 (V4) PL8_2010 (V2) PL8_2011 (V2) PL9_2011 (V3) SA3_2010 (V5) SA4_2010 (V6) SJ5_2010 (V7) PL1_2010 (V1) PL1_2011 (V1) PL2_2010 (V2) PL2_2011 (V2) PL6_2010 (V4) PL6_2011 (V4) PL7_2010 (V4) PL8_2010 (V2) PL8_2011 (V2) PL9_2011 (3) SA3_2010 (V5) SA4_2010 (V6) SJ5_2010 (V7) 0.01* - 0.06 0.06 - 0.03 0.04 0.02* - 0.12 0.12 0.17 0.15 - 0.08 0.08 0.12 0.08 0.02* - 0.06 0.07 0.13 0.08 0.14 0.04 - 0.08 0.06 0.12 0.10 0.13 0.08 0.11 - 0.06 0.10 0.11 0.09 0.16 0.11 0.12 0.13* - 0.06 0.07 0.11 0.09 0.05 0.05 0.09 0.09 0.10 - 0.06 0.09 0.10 0.10 0.20 0.13 0.14 0.16 0.09 0.12 - 0.09 0.16 0.12 0.12 0.27 0.15 0.14 0.22 0.09 0.16 0.08 - 0.12 0.14 0.17 0.08 0.19 0.12 0.14 0.17 0.14 0.13 0.21 0.28 - Table S5. Population pairwise Fst values (lower diagonal) with pairwise geographic distance in meters (upper diagonal) between sites. Non-significant values are in bold. Site(Valley) PL1(V1) PL2(V2) PL6(V4) PL7(V4) PL8_2010(V3) PL8_2011(V3) PL9(V3) SA3(V5) SA4(V6) SJ5(V7) PL1(V1) PL2(V2) PL6(V4) PL7(V4) PL8_2010(V2) PL8_2011(V2) PL9(V3) SA3(V5) SA4(V6) SJ5(V7) 0.09 0.08 0.06 0.07 0.08 0.06 0.07 0.11 0.12 393 0.10 0.10 0.10 0.09 0.09 0.09 0.11 0.11 812 500 0.06 0.09 0.11 0.05 0.14 0.17 0.12 640 375 317 0.11 0.12 0.09 0.14 0.14 0.14 592 370 425 79 0.13 0.09 0.16 0.22 0.17 592 370 425 79 0.10 0.09 0.09 0.14 678 333 263 431 488 488 0.12 0.16 0.13 1,580 1,617 1,682 1,359 1,313 1,313 1,800 0.08 0.21 Figure S1. Plot of linearized pairwise FST [FST/(1- FST)] over pairwise distance (m) between sites in Pau da Lima. 1,655 1,653 1,598 1,330 1,293 1,293 1,774 296 0.28 8,442 8,671 8,892 8,920 8,950 8,950 8,657 10,073 10,124 - Table S6. Population size (NE) with 95% confidence intervals (CI) and census size (NC) estimates with 95% highest probability density (HPD) intervals for clusters 1, 2, and 3. Estimates of NE intervals were computed using the linkage disequilibrium method implemented by LDNE, while NC estimates were calculated with a sequential Bayesian method (Petit and Valiere 2006). Cluster 1 Cluster 2 Cluster 3 Mean NE 94 34 54 95% CI 75-125 10-40 35-85 Mean NC 897 273 454 95% HPD 357-1608 167-396 233-722
© Copyright 2026 Paperzz