General proof of the entropy principle for self-gravitating fluid in static spacetimes 高思杰 北京师范大学(Beijing Normal University) Cooperated with 房熊俊 2017/7/14 2013中国科学技术大学交叉中心 1 Outline 1. Introduction 2. Entropy principle in spherical case --radiation 3. Entropy principle in spherical case –perfect fluid 4. Entropy principle in static spacetime 5. Related works 6. Conclusions. 2017/7/14 中国科学技术大学交叉中心 2 1. Introduction General Relativity Black hole mechanics (Bekenstein, Bardeen,1973) Hawking radiation (1974) thermodynamics 2017/7/14 Black hole thermodynamics General Relativity 中国科学技术大学交叉中心 3 Ted Jacobson (1995) assumed the first law holds for local Rindler horizons. Then the Einstein equation can be derived. 2017/7/14 中国科学技术大学交叉中心 4 In 1965, W.J.Cocke (Ann. Inst. Henri Poincare, 2, 283) proposed a maximum entropy principle for self-gravitating fluid. S: total entropy of fluid M: total mass of fluid S ,M fluid Tolman-Oppenheimer-Volkoff (TOV ) equation: 2017/7/14 中国科学技术大学交叉中心 5 2. Entropy principle in spherical case---radiation Sorkin, Wald, Zhang, Gen.Rel.Grav. 13, 1127 (1981) In 1981, Sorkin, Wald, and Zhang (SWZ) derived the TOV equation of a self-gravitating radiation from the maximum entropy principle. Consider a box of radiation (photon gas) confined within radius R . The stress-energy tensor is given by The radiation satisfies: 2017/7/14 中国科学技术大学交叉中心 6 Assume the metric of the radiation takes the form The constraint Einstein equation 2017/7/14 中国科学技术大学交叉中心 yields 7 Since Euler-Lagrange equation: 2017/7/14 , the extrema of 中国科学技术大学交叉中心 is equivalent to the 8 Using to replace , , we arrive at the TOV equation 2017/7/14 中国科学技术大学交叉中心 9 3. Entropy principle in spherical case---general perfect fluid (Sijie Gao, arXiv:1109.2804 ) • To generalize SWZ’s treatment to a general fluid, we first need to find an expression for the entropy density s . • The first law of the ordinary thermodynamics: Rewrite in terms of densities: Expand: The first law in a unit volume: 2017/7/14 中国科学技术大学交叉中心 10 Thus, we have the Gibbs-Duhem relation 2017/7/14 中国科学技术大学交叉中心 11 2017/7/14 中国科学技术大学交叉中心 12 Note that Thus, 2017/7/14 13 2017/7/14 中国科学技术大学交叉中心 14 2017/7/14 中国科学技术大学交叉中心 15 4.Proof of the entropy principle for perfect fluid in static spacetimes • In this work, we present two theorems relating the total entropy of fluid to Einstein’s equation in any static spacetimes. • A static spacetime admits a timelike Killing vector field which is hypersurface orthogonal. a 2017/7/14 中国科学技术大学交叉中心 16 2017/7/14 中国科学技术大学交叉中心 17 Proof of Theorem 1 2017/7/14 中国科学技术大学交叉中心 18 The total entropy Its variation: Total number of particle: The constraint 2017/7/14 中国科学技术大学交叉中心 19 Then 2017/7/14 中国科学技术大学交叉中心 20 (Constraint Einstein equation) 2017/7/14 中国科学技术大学交叉中心 21 Integration by parts: Integration by parts again and dropping the boundary terms: 2017/7/14 中国科学技术大学交叉中心 22 2017/7/14 中国科学技术大学交叉中心 23 2017/7/14 中国科学技术大学交叉中心 24 2017/7/14 中国科学技术大学交叉中心 25 5. Related works • Proof for stationary case----in process • Stability analysis (1) Z.Roupas [Class. Quantum Grav. 30, 115018 (2013)] calculated the second variation of entropy, showing that the stability of thermal equilibrium is equivalent to stability of Einstein’s equations. (2) Wald et. al. [Class. Quantum Grav. 31 (2014) 035023 ] proved the equivalence of dynamic equibrium and thermodynamic equibrium for stationary asymtotically flat spacetimes with axisymmetry. • Beyond general relativity: Li-Ming Cao, Jianfei Xu, Zhe Zeng [Phys. Rev. D 87, 064005 (2013)] proved the maximum entropy principle in the framework of Lovelock gravity. 2017/7/14 中国科学技术大学交叉中心 26 6. Conclusions • We have rigorously proven the equivalence of the extrema of entropy and Einstein's equation under a few natural and necessary conditions. The significant improvement from previous works is that no spherical symmetry or any other symmetry is needed on the spacelike hypersurface. Our work suggests a clear connection between Einstein's equation and thermodynamics of perfect fluid in static spacetimes. 2017/7/14 中国科学技术大学交叉中心 27 Thank you! 2017/7/14 中国科学技术大学交叉中心 28
© Copyright 2026 Paperzz