PO-set paths and q -commuting minors Aaron Lauve LaCIM - UQAM Séminaire de combinatoire et d’informatique mathématique le 7 avril 2006 http://www.lacim.uqam.ca/∼lauve (“Research”) [email protected] Outline I. Flags • what is a flag? • who cares? II. (commutative) Generic matrices • column-minor identities • homogeneous coordinate ring of the flag variety III. q -Generic matrices • row-quantum-minor identities • quantum flag variety IV. (noncommutative) Generic matrices • row-quasi-minor identities • specializations V. q -Commuting minors • “missing” relations • PO-set paths 1 I. Flags • Fix: an integer n > 1 and a vector space V = Cn . • Fix: a sequence of integers λ : n ≥ λ1 > λ2 > · · · > λs ≥ 0. Definition (Flag). A flag Φ of shape λ is a chain of subspaces Φ: satisfying λi 0 ⊆ V 1 ( V2 ( · · · ( V s ⊆ V = codim Vi = n − dim Vi . Denote the collection of all flags of shape λ by F l(λ). 2 I. Flags • Fix: an integer n > 1 and a vector space V = Cn . • Fix: a sequence of integers λ : n ≥ λ1 > λ2 > · · · > λs ≥ 0. Definition (Flag). A flag Φ of shape λ is a chain of subspaces Φ: satisfying λi 0 ⊆ V 1 ( V2 ( · · · ( V s ⊆ V = codim Vi = n − dim Vi . Denote the collection of all flags of shape λ by F l(λ). Example. Taking n = 6 and λ = (5, 3, 2), Φ : span {v1 } ⊆ span {v1 , v2 , v3 } ⊆ span {v1 , v2 , v3 , v4 } is a flag when v1 , . . . , v4 are linearly independent. 3 I. Flags • Fix: an integer n > 1 and a vector space V = Cn . • Fix: a sequence of integers λ : n ≥ λ1 > λ2 > · · · > λs ≥ 0. Definition (Flag). A flag Φ of shape λ is a chain of subspaces Φ: satisfying λi 0 ⊆ V 1 ( V2 ( · · · ( V s ⊆ V = codim Vi = n − dim Vi . Denote the collection of all flags of shape λ by F l(λ). Example. Taking n = 6 and λ = (5, 3, 2), Φ : span {v1 } ⊆ span {v1 , v2 , v3 } ⊆ span {v1 , v2 , v3 , v4 } is a flag when v1 , . . . , v4 are linearly independent. • Choose a basis B for V and express Φ as a matrix A(Φ). . . 4 I. Flags • Φ : span {v1 } ⊆ span {v1 , v2 , v3 } ⊆ span {v1 , v2 , v3 , v4 } a11 a12 a13 a14 a15 a16 a 21 a22 a23 a24 a25 a26 A(Φ) = a31 a32 a33 a34 a35 a36 a41 a42 a43 a44 a45 a46 5 V1 V 2 V2 V3 I. Flags • Φ : span {v1 } ⊆ span {v1 , v2 , v3 } ⊆ span {v1 , v2 , v3 , v4 } a11 a12 a13 a14 a15 a16 a 21 a22 a23 a24 a25 a26 A(Φ) = a31 a32 a33 a34 a35 a36 a41 a42 a43 a44 a45 a46 6 V1 V 2 V2 V3 I. Flags • Φ : span {v1 } ⊆ span {v1 , v2 , v3 } ⊆ span {v1 , v2 , v3 , v4 } a11 a12 a13 a14 a15 a16 a 21 a22 a23 a24 a25 a26 A(Φ) = a31 a32 a33 a34 a35 a36 a41 a42 a43 a44 a45 a46 7 V1 V 2 V2 V3 I. Flags • Φ : span {v1 } ⊆ span {v1 , v2 , v3 } ⊆ span {v1 , v2 , v3 , v4 } a11 a12 a13 a14 a15 a16 a 21 a22 a23 a24 a25 a26 A(Φ) = a31 a32 a33 a34 a35 a36 a41 a42 a43 a44 a45 a46 V1 V 2 V2 V3 ∗ ∗ ∗ ∗ • Unique up to change of basis! . . . multiplying by Pλ = ∗ ∗ ∗ ∗ ∗ ∗ ∗ 8 on the left. I. Who Cares? a12 · · · · · · a 11 a21 a22 A(Φ) = .. .. . . ad1 ad2 · · · · · · a1n a2n .. . adn (d = n − λs ) Representation Theory Notice that GLn (C) (and its many important subgroups) permutes F l(λ) by right-multiplication. 9 I. Who Cares? A(Φ) = a11 a12 a13 a14 a21 a22 a23 a24 Topology/Algebraic Geometry The space F l(λ) is a (projective) algebraic variety and a CW-complex, described via Gaussian elimination (G.E.). Consider the case n = 4, λ = (2): " µ = (00) " # (11) " # # G.E. −→ Open cells: (10) " # (21) " # 10 (20) " # (22) " # I. Who Cares? a11 a12 a13 a14 A(Φ) = a21 a22 a23 a24 Topology/Algebraic Geometry The space F l(λ) is a (projective) algebraic variety and a CW-complex, described via Gaussian elimination. Consider the case n = 4, λ = (2): Schubert cells Ωµ : µ = (00) " # (11) " # Partitions µ with |λ| (10) " # (21) " # (20) " # (22) " # = 2 parts and part-size at most n − 2 = 2. Combinatorics The classes [Ωµ ] in the cohomology ring H • (F l(λ)) are Schur polynomials!! 11 II. (commutative) Generic Matrices Definition. Let X = (xij ) be an n × n matrix of commuting indeterminants. Call X a 2 generic matrix (coordinate functions for a “generic point” in C n ). x i1 j2 · · · x i1 jd x i1 j1 x x · · · x i2 j1 i2 j2 i2 jd d . Definition. For I, J ∈ [n] , put XI,J = .. .. .. . . . x id j1 x id j2 · · · x id jd Let XJ denote the special case I = (1, 2, . . . , d) (take the first d rows of X ). Consider the column-minors of shape λ: M(λ) = {[[I]] := det XI : n − |I| ∈ λ} . Problem: Describe the relations R among the minors M(λ). 12 II. (commutative) Generic Matrices Answer (Schur ‘01, Hodge ‘43): The minors M(λ) satisfy the Young symmetry relations 0= X (−1)`(L\Λ|Λ) [[L \ Λ]][[Λ|M ]] (YL,M ) Λ⊆L |Λ|=r for any 1 ≤ r and any L, M ⊆ [n] with |M | + r ≤ |L| − r ∈ n − λ. Moreover, writing M(λ) = {I1 , . . . IN }, if F (Z1 , . . . , ZN ) is a polynomial which is zero on substitution Zi 7→ [[Ii ]], then F is algebraically dependent on the (YL,M ). Example: [[12]][[34]] − [[13]][[24]] + [[23]][[14]] = 0. Non-example: (Sylvester’s Identity) (det A123,123 ) (det A2,2 ) = (det A12,12 ) (det A23,23 ) − (det A12,23 ) (det A23,12 ) . 13 III. q -Generic Matrices 2 Definition. Call a matrix X q -generic if every 2 × 2 submatrix (←) ba = q ab dc = q cd ( ↑ ) ca = q ac db = q bd 6 6 6 6 4 a b c d 3 7 7 7 7 5 satisfies: (%) cb = bc (-) da = ad + (q − q −1 ) bc Define the quantum determinant by detq XI,J = X (−q)−`(σ) xi1 jσ(1) xi2 jσ(2) · · · xid jσ(d) σ∈Sd for I, J ∈ [n]d , and let [[J]] now denote detq XJ . Problem: Describe the relations R among the minors M q (λ). 14 III. q -Generic Matrices Answer (Taft-Towber ‘91): The set R is (algebraically) generated by the relations below: q -Alternating: (∀I ∈ [n]d ) [[I]] = (−q)−`(σ) [[σI]] if σ “straightens” I. q -Young symmetry: (∀L, M ⊆ [n], r > 0) s.t. |M | + r ≤ |L| − r X 0= (−q)−`(L\Λ|Λ) [[L \ Λ]][[Λ | M ]] . (YL,M ) q -Straightening: (∀I, J ( [n]) s.t. |J| < |I| X [[J]][[I]] = (−q)+`(Λ|I\Λ) [[J|I \ Λ]][[Λ]] . (SJ,I ) Λ⊂L,|Λ|=r Λ⊆I,|Λ|=|J| Example: [[12]][[34]] − 1q [[13]][[24]] + Non-examples: (cf. Goodearl, ‘05) 15 1 [[23]][[14]] q2 = 0. IV. (noncommutative) Generic Matrices • Now let X be a matrix of noncommuting variables. Definition (Gelfand-Retakh ‘91). The (ij)-quasideterminant |X| ij is defined whenever X ij is invertible, and in that case, |X|ij = 16 IV. (noncommutative) Generic Matrices • Now let X be a matrix of noncommuting variables. Definition (Gelfand-Retakh ‘91). The (ij)-quasideterminant |X| ij is defined whenever X ij is invertible, and in that case, |X|ij = = − · • 2 × 2 Example: |A|12 a11 a12 = a21 a22 = a12 − a11 a−1 a22 . 21 17 −1 · IV. (noncommutative) Generic Matrices • It is better to take ratios of quasideterminants as “column-minor” replacements Definition. Given an n × n matrix X and a partition λ, the column-minors are given by n −1 Mquasi (λ) = pK ij (X) := |Xi∪K |di |Xj∪K |dj o i, j ∈ [n], K ⊆ [n] \ i, n − 1 − |K| ∈ λ Quasi-Plücker Relations (Gelfand-Retakh ‘97, L. ’04): If L, M ⊆ [n], i ∈ [n] \ M , |M | ≤ |L| − 1, then: 1= X L\j pM ij (X)pji (X) . j∈L Problem: Describe the relations R satisfied by Mquasi • Need to expand search to rational expressions, not just algebraic ones. • some are known. . . maybe all? 18 (Pi,L,M ) IV. (noncommutative) Generic Matrices Why study these matrices? • May study “all” the deformations of the commutative generic matrix at once! • X → commutative generic: • X → q -generic: −1 pK ij → ratio of two determinants [[i ∪ K]] [[j ∪ K]] −1 pK ij → ratio of two quantum determinants [[i ∪ K]] [[j ∪ K]] Question: How much of R(M) or R(Mq ) may be recovered on specializing X and R(Mquasi )? Answer: For commutative case, all. For q -generic case, a lot. . . 19 V. “Missing” Relations • While showing R(Mquasi ) ⇒ (YL,M ) for quantum setting, we discover something “new:” • [[I]] and [[J]] often q -commute [Krob-Leclerc ‘95]. Definition. Given two subsets I, J ⊆ [n], we say J surrounds I , written J y I , if (i) |J| ≤ |I|, and (ii) there exist disjoint subsets ∅ ⊆ J 0 , J 00 ⊆ J such that: a. J \ I = J 0 ∪˙ J 00 , b. j 0 < i for all j 0 ∈ J 0 and i ∈ I \ J , c. i < j 00 for all i ∈ I \ J and j 00 ∈ J 0 , Theorem (q -Commuting Minors). If the subsets I, J ⊆ [n] satisfy J y I , the quantum minors [[J]] and [[I]] q -commute. Specifically, [[J]][[I]] = q |J 00 |−|J 0 | 20 [[I]][[J]] . (CJ,I ) V. Finding the Missing Relations Theorem (L, ‘06). Given I, J ⊆ [n]. If J y I , then the sum CJ,I may be written as a Z[q, q −1 ]-linear combination of the sums SJ,I and YI∪(J\K),K ( ∅ ⊆ K ( J ). The coefficients involved are described in terms of path-weighs in a directed graph. Open Question (converse): Give an easy proof that only if J [Leclerc-Zelevinsky ‘98] 21 y I can C J,I be so written. V. Example 1 Writing C1,234 in terms of S1,234 and YL,M . −q −1 f234 f1 C1,234 f1 f234 S1,234 f1 f234 −q 2 f123 f4 q 2 Y1234,∅ +q 1 f124 f3 −q 0 f134 f2 f123 f4 −q −1 f124 f3 +q −2 f134 f2 −q −3 f234 f1 22 V. Example 1 Writing C1,234 in terms of S1,234 and YL,M . −q −1 f234 f1 C1,234 f1 f234 S1,234 f1 f234 −q 2 f123 f4 q 2 Y1234,∅ +q 1 f124 f3 −q 0 f134 f2 q 2 f123 f4 −q 1 f124 f3 +q 0 f134 f2 −q −1 f234 f1 C1,234 = S1,234 + q 2 Y1234,∅ 23 V. Example 2 Writing C14,23 in terms of YL,M . [14][23] [24][13] [34][12] [12][34] [13][24] [23][14] −1 C14,23 1 Y1234,∅ q −2 −q −3 q −4 Y234,1 0 q −2 −q −3 Y123,4 0 1 q −2 −q −1 1 24 −q −1 −q −1 q −2 V. Example 2 Writing C14,23 in terms of YL,M . [14][23] [24][13] [34][12] [12][34] [13][24] [23][14] −1 C14,23 1 Y1234,∅ q −2 −q −3 q −4 Y234,1 0 q −2 −q −3 Y123,4 0 1 q −2 −q −1 1 25 −q −1 −q −1 q −2 V. Example 2 Writing C14,23 in terms of YL,M . [14][23] [24][13] [34][12] [12][34] [13][24] [23][14] C14,23 1 Y1234,∅ q −2 Y234,1 −1 −q −3 q −4 q −2 −q −3 1 26 q −2 −q −1 1 Y123,4 −q −1 −q −1 q −2 V. Example 2 Writing C14,23 in terms of YL,M . [14][23] [24][13] [34][12] [12][34] [13][24] [23][14] C14,23 1 Y1234,∅ q −2 Y234,1 −1 −q −3 q −4 q −2 −q −3 1 27 q −2 −q −1 1 Y123,4 −q −1 −q −1 q −2 V. Example 2 Writing C14,23 in terms of YL,M . [14][23] [24][13] [34][12] [12][34] [13][24] [23][14] C14,23 1 Y1234,∅ q −2 Y234,1 −1 −q −3 q −4 q −2 −q −3 1 28 q −2 −q −1 1 Y123,4 −q −1 −q −1 q −2 V. Example 3 Writing C156,234 in terms of YL,M . y∅ y1 y5 y6 e∅ e1 1 α∅1 α∅5 α∅6 α∅15 α∅16 α∅56 α∅156 e5 e6 e15 e16 e56 α115 α116 1 α515 1 e156 α1156 α556 α5156 α616 α656 α6156 1 y 15 156 α15 1 y 16 156 α16 1 y 56 1 29 156 α56 V. Example 3 Writing C156,234 in terms of YL,M . y∅ y1 e∅ e1 1 α∅1 α∅5 α∅6 α∅15 α∅16 α∅56 α∅156 e5 e6 e15 y6 e56 α115 α116 1 y5 e16 α515 1 e156 α1156 α556 α5156 α616 α656 α6156 1 y 15 156 α15 1 y 16 156 α16 1 y 56 1 • Perform Gaussian Elimination!! • Hope that what remains on the first row is 1 and (−q)θ q 2−1 30 156 α56 V. Example 3 Writing C156,234 in terms of YL,M . y∅ y1 y5 y6 e∅ e1 1 α∅1 α∅5 α∅6 α∅15 α∅16 α∅56 α∅156 e5 e6 e15 e16 e56 α115 α116 1 α515 1 e156 α1156 α556 α5156 α616 α656 α6156 1 y 15 156 α15 1 y 16 156 α16 1 y 56 1 • Perform Gaussian Elimination!! X J J J • In general, we get: coeff e = α∅ − α∅A αA + ∅(A(J 31 156 α56 X ∅(A(B(J B J α∅A αA αB − · · · V. Example 3 A directed graph with edge-weights Γ(J; I) associated to J 56 6 156 16 5 ∅ α1∅ = 156 and I = 234. α156 15 −→ 15 1 α15 1 32 156 = −q −5 α∅1 α115 α15 V. Example 3 A directed graph with edge-weights Γ(J; I) associated to J 56 6 156 16 5 ∅ α1∅ = 156 and I = 234. α156 15 −→ 15 1 α15 1 33 156 = −q −5 α∅1 α115 α15 V. Example 3 A directed graph with edge-weights Γ(J; I) associated to J 56 6 156 16 5 ∅ B αA B C αA αB 1 := (−q) = α156 15 −→ 15 α1∅ h = 156 and I = 234. 156 = −q −5 α∅1 α115 α15 α15 1 −`(J\B|B\A)−`(B\A|A)+{2|J\B|−|I|}·|(B\A)∩J 0 | (−q) 2`((B\A)∩J 0 |C\B)−2`(C\B|(B\A)∩J 00 ) 34 i C αA V. Let J PO-set paths = J 0 ∪ J 00 = {j10 , . . . , jr0 0 } ∪ {j100 , . . . , jr0000 }. We consider certain paths in Γ(J; I): n o P0 = (A1 , A2 , . . . , Ap ) | Ai ⊆ J s.t. ∅ ( A1 ( A2 ( · · · ( Ap ( J and P = P0 ∪ 0̂ ∪ 1̂, where 0̂ = (∅), and 1̂ = ({j100 }, {j100 , j200 }, . . . , J 00 , {jr0 0 , . . . , jr0000 }, . . . , {j20 , . . . , jr0000 }, J). The weight α(π) of a path π = (A1 , . . . , Ap ) ∈ P is the product of edge weights of the augmented path (∅, π, J): A p A2 J α∅A1 · αA · · · α · α . A A p 1 p−1 min(K ∩ J 0 ) if K ∩ J 0 6= ∅ Definition. For K ⊆ J , define mM(K) := max(K ∩ J 00 ) otherwise. For any path π = (A1 , . . . , Ap ), put A0 = ∅ and Ap+1 = J . 35 V. PO-set paths Definition. Call 1̂ regular and 0̂ irregular. Call a path (A1 , . . . , Ap ) ∈ P0 regular (or regular at position i0 ), if (∃i0 ) (1 ≤ i0 ≤ p) satisfying: (b) Ai0 \ Ai0 −1 = mM(Ai0 +1 \ Ai0 −1 ). (a) |Ai | = i (∀ 1 ≤ i ≤ i0 ); A path in P0 is irregular if it is nowhere regular. Proposition. The regular and irregular subsets of P are equinumerous. A bijection ℘. Given an irregular path π = (A1 , . . . , Ap ) ∈ P0 , we insert a new set B so that ℘(π) is regular at B : 1. Find the unique i0 satisfying: 2. Compute b 3. Put B (|Ai | = i ∀i ≤ i0 ) ∧ (|Ai0 +1 | > i0 + 1). = mM(Ai0 +1 \ Ai0 ) = Ai0 ∪ {b}. 4. Define ℘(π) Finally, put ℘(0̂) := (A1 , . . . , Ai0 , B, Ai0 +1 , . . . , Ap ). = ({j1 }). Proposition. The bijection ℘ is path-weight preserving and α(℘ −1 (1̂)) 36 = (−q)θ q |J 00 |−|J 0 | . 56 156 16 6 5 ∅ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • 1 ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ 15 • ◦ ◦ ◦ 56 156 16 6 5 ∅ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • 1 ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ 15 • ◦ • ◦ ◦ ◦
© Copyright 2026 Paperzz