Maximum vanishing subspace problem, CAT(0)-space relaxation, and block-triangularization of partitioned matrix Hiroshi Hirai University of Tokyo [email protected] Joint work with Masaki Hamada 10th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications May 23, 2017, Budapest, Hungary 1 DM-decomposition of matrix (Dulmage-Mendelsohn 1958) • A canonical form under row/column permutation • Matching/stable set problem in bipartite graph ∗ ∗ 𝐴 ↦ 𝑃𝐴𝑄 = 𝑃, 𝑄:permutation matrix ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ 2 edge 𝑖𝑗 ⟺ 𝑎𝑖𝑗 ≠ 0 ′ ′ ′ 1 2 3 1 2 𝑋3 𝑋2 𝑋1 𝑋𝑋 0 * * * * 0 * 𝑌 𝑌3 𝑌2 𝑌1 𝐴 = (𝑎𝑖𝑗 ) 1 2′ 2 3′ 𝑌 3 * * * 𝑋 𝑌0 zero submatrix (max.) 1′ bipartite graph stable set (max.) • 𝑋, 𝑌 , 𝑋 ′ , 𝑌 ′ : stable ⇒ 𝑋 ∪ 𝑋 ′ , 𝑌 ∩ 𝑌 ′ , 𝑋 ∩ 𝑋 ′ , 𝑌 ∪ 𝑌 ′ : stable • The family of maximum stable sets ⇒ distributive lattice • A maximal chain ⇒ DM-decomposition • A polynomial time algorithm via bipartite matching 3 DM-decomposition of partitioned matrix 𝐴= 𝐴11 𝐴21 ↦𝑃 𝐸1 0 0 𝐸2 ⋮ 0 0 0 0 ⋱ ⋮ ⋯ 𝐸𝜇 ⋯ 𝑃, 𝑄: permutation 𝐸𝛼 , 𝐹𝛽 :nonsingular 𝐴1𝜈 ⋯ 𝐴2𝜈 ⋱ ⋮ ⋯ 𝐴𝜇𝜈 𝐴12 𝐴22 ⋮ 𝐴𝜇1 𝐴𝜇2 𝐴11 𝐴21 𝐴12 𝐴22 ⋮ 𝐴𝜇1 (Ito-Iwata-Murota 1994) 𝐴𝜇2 ∗ 𝐴𝛼𝛽 : 𝑚𝛼 × 𝑛𝛽 matrix 𝐴1𝜈 𝐴2𝜈 ⋱ ⋮ ⋯ 𝐴𝜇𝜈 𝐹1 0 ⋯ ⋮ 0 0 ∗ 0 ⋯ ⋱ ⋯ 0 0 𝑄 ⋮ 𝐹𝜈 ∗ ∗ = 0 𝐹2 ∗ ∗ ∗ ∗ ∗ 4 Example: (2,2,2;2,2,2) matrix over GF(2) 0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 = 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 1 row/column permutation 0 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 5 Maximum Vanishing Subspace Problem (H.2016, Implicit in Ito-Iwata-Murota 1994) 𝐴= 𝐴11 𝐴21 𝐴12 𝐴22 ⋮ 𝐴𝜇1 𝐴𝜇2 𝐴1𝜈 ⋯ 𝐴2𝜈 ⋱ ⋮ ⋯ 𝐴𝜇𝜈 𝑋𝛼 + 𝐴𝛼𝛽 : 𝑚𝛼 × 𝑛𝛽 matrix over field 𝔽 Max. 𝛼 dim s.t. 𝑋𝛼 ⊆ 𝔽𝑚𝛼 , 𝑌𝛽 ⊆ ॲ𝑛𝛽 , subsp. 𝛽 dim 𝑌𝛽 subsp. 𝐴𝛼𝛽 𝑋𝛼 , 𝑌𝛽 = 0 ∀𝛼, 𝛽 , where 𝐴𝛼𝛽 : ॲ𝑚𝛼 × ॲ𝑛𝛽 → ॲ 𝑢, 𝑣 ↦ 𝑢𝑇 𝐴𝛼𝛽 𝑣 Rem: 𝑚𝛼 = 𝑛𝛽 = 1 ---> bipartite stable set prob. 6 𝑋 = 𝑋1 ⊕ 𝑋2 ⊕ ⋯ ⊕ 𝑋𝜇 Vanishing subspace (𝑋, 𝑌) ⇔ 𝑌 = 𝑌1 ⊕ 𝑌2 ⊕ ⋯ ⊕ 𝑌𝜈 𝐴𝛼𝛽 𝑋𝛼 , 𝑌𝛽 = 0 ∀𝛼, 𝛽 row/col operation “within blocks” + row/col permutation 𝑋 ← dim 𝑋 → 𝐴~ 0 ⟵ dim 𝑌 ⟶ (max.) 𝑌 𝑋, 𝑌 , 𝑋 ′ , 𝑌 ′ : vanishing (max.) ⇒ 𝑋 + 𝑋 ′ , 𝑌 ∩ 𝑌 ′ , 𝑋 ∩ 𝑋 ′ , 𝑌 + 𝑌 ′ : vanishing • The family of max. vanishing subspace ⇒ modular lattice • A maximal chain ⇒ DM-decomposition 7 • Polytime algorithm for DM-decom. is not known in general Special cases: • one submatrix • each submatrix is 1x1 • each submatrix is *x1 ---> Gaussian elimination ---> original DM-decom. ---> CCF of mixed matrix Murota-Iri-Nakamura 87 • each submatrix is rank-1 (H. 16) • 𝐴11 𝐴21 matroid intersection 𝐴12 , 𝐴𝛼𝛽 : nonsingular ---> eigenvalue comp. 𝐴22 • sizes of submatrices & base field are fixed (H-Nakashima 2017) VCSP 8 Why are MVSP & DM-decomposition interesting? • Numerical computation vs. combinatorial optimization • Submodular optimization on (infinite) modular lattice Finite case: Kuivinen 2009,2011, Fujishige et al. 2015, ( ⋯ )𝑛 • Suggest “vector-space version” of combinatorial optimization ?? 𝑆 ⊆ 𝑉, subset subspace finite set |𝑆| cardinality finite-dimensional vector space dim S dimension 9 Result (answering the problem of Ito-Iwata-Murota 1994) Q1. Is MVSP solvable in polynomial time ? YES (Hamada-H. 2017) Q2. Is DM-decom. obtained in polynomial time ? Still we do not know the complete answer but... • DM-decom. ⊇ eigenvalue problem, more difficult numerical problem • A reasonable coarse decomposition --- quasi DM-decomposition --is obtained in polytime by solving weighted-MVSP. --- generalizes original-DM & CCF 10 In the rest of the talk, we describe the outline of the proof Theorem (Hamada-H. 2017) MVSP is solvable in polynomial time ⊇ polynomial number of arithmetic operations in 𝔽 Max. 𝛼 dim 𝑋𝛼 + s.t. 𝑋𝛼 ⊆ 𝔽𝑚𝛼 , 𝑌𝛽 ⊆ ॲ𝑛𝛽 subsp. 𝛽 dim 𝑌𝛽 subsp. 𝐴𝛼𝛽 𝑋𝛼 , 𝑌𝛽 = 0 ∀𝛼, 𝛽 Difficulty: Duality & LP/convex relaxation are not known 11 MVSP is submodular optimization 𝑚+𝑛+1 Min. − s.t. 𝛼 dim 𝑋𝛼 − 𝛽 dim 𝑌𝛽 +𝑀 𝛼,𝛽 rank 𝐴𝛼𝛽 |𝑋𝛼 ×𝑌𝛽 (𝑋1 , 𝑋2 , … , 𝑋𝜇 , 𝑌1 , 𝑌2 , … , 𝑌𝜈 ) ∈ ℒ1 × ℒ2 × ⋯ × ℒ𝜇 × ℳ1 × ℳ2 × ⋯ × ℳ𝜈 ℒ𝛼 /ℳ𝛽 : modular lattice of all vector subsp. in 𝔽𝑚𝛼 /𝔽𝑛𝛽 w.r.t. inclusion w.r.t. reverse inclusion 𝑚≔ 𝛼 𝑚𝛼 ,𝑛 ≔ 𝛽 𝑛𝛽 Lemma (cf. Iwata-Murota 1995) 𝑋𝛼 × 𝑌𝛽 ⟼ rank 𝐴𝛼𝛽 |𝑋𝛼 ×𝑌𝛽 is submodular on ℒ𝛼 × ℳ𝛽 12 Outline : Beyond Euclidean convex relaxation modular lattice lattice Submodular optimization on distributive Convex optimization on ↪ ↪ Lovász extension Euclidean space CAT(0)-space • MVSP is submodular optimization on modular lattice. • Splitting Proximal Point Algorithm (Bačák, Ohta-Pálfia) to minimize sum of convex function in CAT(0)-space. • Apply SPPA to CAT(0)-space relaxation of MVSP. 13 Cartan-Alexandrov-Topogonov curvature ≤ 0 CAT(0)-space (Gromov 87) ⇔ geodesic metric space (𝑆, 𝑑) in which every triangle is “slimmer” 𝑥 𝑥 𝑆 𝑦 𝑦 𝑝 ℝ2 𝑧 𝑑 𝑥, 𝑝 ≤ 𝑥 − 𝑝 2 𝑝 𝑧 𝑑 𝑥, 𝑦 = 𝑥 − 𝑦 𝑑 𝑦, 𝑧 = 𝑦 − 𝑧 𝑑 𝑧, 𝑥 = 𝑧 − 𝑥 FACT: CAT(0)-space is uniquely geodesic ---> convex function 14 2 2 2 Modular lattice ↪ CAT(0)-space othoscheme complex ℒ: modular lattice of finite rank 𝐾 ℒ := the set of convex combinations 𝑝∈ℒ 𝜆 𝑝 𝑝 of ℒ s.t. supp λ is a chain (Brady-McCammond 2012) 𝑝3 111 (ℝ𝑛 , 𝑙2 ) 𝑝2 ℒ 110 𝑝1 𝑝0 000 100 Theorem (Haettel-Kielak-Schwer 2017, Chalopin-Chepoi-H-Osajda 2014) 𝐾 ℒ is a complete CAT(0)-space. 15 Example ... ℒ ℒ = 2{1,2,…,𝑛} 𝐾 ℒ 𝐾 ℒ ≃ 0,1 𝑛 16 Submodular function ↪ convex function ℒ: modular lattice of finite rank Lovasz extension 𝑓: 𝐾(ℒ) → ℝ of 𝑓: ℒ → ℝ 𝑓 𝑥 ≔ 𝑖 𝜆𝑖 𝑓(𝑝𝑖 ) (𝑥 = 𝑖 𝜆𝑖 𝑝𝑖 ∈ 𝐾(ℒ)) Theorem (H. 2016) 𝑓 is submodular on ℒ ⇔ 𝑓 is convex on 𝐾(ℒ) (w.r.t. CAT(0)-metric) The original version: ℒ = 2 1,2,…,𝑛 , 𝐾 ℒ ≃ [0,1]𝑛 17 MVSP ↪ convex optimization on CAT(0)-space Min. − s.t. 𝛼 dim (𝑥𝛼 ) − 𝛽 dim(𝑦𝛽 ) +𝑀 𝛼,𝛽 𝑅𝛼𝛽 (𝑥𝛼 , 𝑦𝛽 ) (𝑥1 , 𝑥2 , … , 𝑥𝜇 , 𝑦1 , 𝑦2 , … , 𝑦𝜈 ) ∈ 𝐾(ℒ1 × ℒ2 × ⋯ × ℒ𝜇 × ℳ1 × ℳ2 × ⋯ × ℳ𝜈 ) ≅ 𝐾(ℒ1 ) × 𝐾(ℒ2 ) × ⋯ × 𝐾(ℒ𝜇 ) × 𝐾(ℳ1 ) × 𝐾(ℳ2 ) × ⋯ × 𝐾(ℳ𝜈 ) 𝑅𝛼𝛽 𝑋𝛼 , 𝑌𝛽 ≔ rank 𝐴𝛼𝛽 |𝑋𝛼 ×𝑌𝛽 We apply continuous optimization algorithm to this problem 18 To recover a minimizer of f from 𝑓, we use: Lemma 𝑓: ℒ → ℤ, 𝑥 = 𝜆𝑖 𝑝𝑖 ∈ 𝐾 ℒ If 𝑓 𝑥 − min 𝑓 < 1 ⇒ some 𝑝𝑖 is a minimizer of 𝑓 19 Splitting Proximal Point Algorithm 𝑆, 𝑑 : complete CAT(0)-space (Bačák 14) 𝑓1 , 𝑓2 ,..., 𝑓𝑁 : convex functions on 𝑆 Goal: minimize 𝑓 ≔ 𝑁 𝑖=1 𝑓𝑖 SPPA: 𝑧𝑘+1 ≔ argmin𝑧 ∈ 𝑆 𝑓𝑘 mod 𝑁 𝑧 + Theorem (Ohta-Pálfia 15) 𝑓𝑖 : 𝐿-Lipschitz, 𝑓: 𝜖-strongly-convex, 𝜆𝑘 ≔ ⇒ 𝑓 𝑧𝑘 − min 𝑓 ≤ 1 𝑑(𝑧, 𝑧𝑘 )2 2𝜆𝑘 1 2𝜖 𝑘+1 poly(𝐿, 𝑁, 𝜖 −1 , diam 𝑆) 𝑘 20 Apply SPPA to perturbed objective 2 − dim 𝑥 + 𝜖𝑑(0, 𝑥 ) 𝛼 𝛼 𝛼 + + 2 −dim(𝑦 ) + 𝜖𝑑(0, 𝑦 ) 𝛽 𝛽 𝛽 ensure 𝜖-strong-convexity 𝜖 −1 = 𝑂(𝑛 + 𝑚) 𝛼,𝛽 𝑀𝑅𝛼𝛽 (𝑥𝛼 , 𝑦𝛽 ) 𝑧 = (𝑥1 , 𝑥2 , … , 𝑥𝜇 , 𝑦1 , 𝑦2 , … , 𝑦𝜈 ) • 0 ≤ obj 𝑧 − obj(𝑧) ≤ 1/2 • each term is 𝑂 poly 𝑚, 𝑛 -Lipschitz • 𝑁 = 𝑂(𝑚𝑛) 𝑧𝑘 = generated by SPPA for obj 𝑘 = Ω poly 𝑚, 𝑛 ⇒ obj 𝑧𝑘 − opt ≤ obj 𝑧𝑘 − opt ⇒ supp(𝑧𝑘 ) ∋ minimizer 1 + 2 <1 21 In each iteration of SPPA, we need to solve: 2 + 𝑑 𝑥0, 𝑥 2 P1: Min. −dim 𝑥 + 𝜖𝑑 0, 𝑥 1 𝑑 2𝜆 𝑥0, 𝑥 2 + 𝑑 𝑦0, 𝑦 2 s.t. 𝑥 ∈ 𝐾 ℒ P2: Min. 𝑅𝐴 𝑥, 𝑦 + s.t. 1 2𝜆 𝑥, 𝑦 ∈ 𝐾 ℒ × ℳ ≅ 𝐾 ℒ) × 𝐾(ℳ rev. inclusion ℒ /ℳ: modular lattice of all vector subsp. in 𝔽𝑚 / 𝔽𝑛 𝐴: 𝔽𝑚 × 𝔽𝑛 → 𝔽: bilinear form 𝑅𝐴 𝑋, 𝑌 ≔ rank 𝐴|𝑋×𝑌 P1 and P2 are solvable in polynomial time 22 − 𝑥 𝜖 𝑥 1 P1: Min. −dim 𝑥 + 𝜖𝑑 0, 𝑥 s.t. 𝑥 ∈ 𝐾 ℒ 1 2𝜆 2 2 2 + 1 𝑑 2𝜆 𝑥0, 𝑥 2 2 2 𝑝3 𝑥0 = 𝑥∗ 𝑝0 𝑥0 − 𝑥 𝑖 𝜆𝑖 𝑝𝑖 𝑝2 𝑝1 Minimizer 𝑥 ∗ exists in the simplex ∋ 𝑥 0 ---> easy convex quadratic program 23 P2: Min. 𝑅𝐴 𝑥, 𝑦 + 1 2𝜆 𝑑 𝑥0, 𝑥 2 + 𝑑 𝑦0, 𝑦 2 𝑥, 𝑦 ∈ 𝐾 ℒ × ℳ s.t. ℒ ℳ 0 X Y 0⊥ 0⊥ X Y 0 ∙ ⊥ : orthogonal space w.r.t. 𝐴 distributive lattice Minimizer (𝑥 ∗ , 𝑦 ∗ ) exists 0 0⊥ 0⊥ 0 in 𝐾 X , Y × 𝐾 X ,Y ↪ 0,1 ---> easy convex quadratic program 𝑚+𝑛 24 Concluding remarks • Weighted-MVSP: Max. 𝛼 𝐶𝛼 dim 𝑋𝛼 + is solvable in pseudo-polynomial time 𝛽 𝐷𝛽 dim 𝑌𝛽 • Quasi DM-decomposition ⟺ a chain of max. vanishing subsp. detectable by WMVSP • Duality theory + better algorithm for MVSP ? • Vector-space generalization of other problems ? • CAT(0)-space relaxation ---> new paradigm in combinatorial optimization ? 25 Thank you for your attention! M. Hamada and H. Hirai: Maximum vanishing subspace problem, CAT(0)-space relaxation, and block-triangularization of partitioned matrix, 2017, arXiv. 26
© Copyright 2026 Paperzz