A Hybrid Symbolic-Numerical Method for Determining Model Structure Diana Cole, NCSE, University of Kent Rémi Choquet, Centre d'Ecologie Fonctionnelle et Evolutive Ben Hubbard, NCSE, University of Kent Introduction โ Example Capture-Recapture Herring Gulls (Larus argentatus) capture-recapture data for 1983 to 1986 (Lebreton, et al 1995) 78 ๏ฌ83 Numbers Released: ๐น = 123 ๏ฌ84 111 ๏ฌ85 Recapture yr Yr released 83๏ฎ Numbers Recaptured: 84 85 86 67 4 2 84๏ฎ ๐ต = 0 103 3 85๏ฎ 0 0 91 Introduction โ Example Capture-Recapture 67 4 2 ๐ต = 0 103 3 0 0 91 78 ๐น = 123 111 ๏ฆi โ probability a bird survives from occasion i to i+1 pi โ probability a bird is recaptured on occasion i ๏ฑ = [๏ฆ1, ๏ฆ2, ๏ฆ3, p2, p3, p4 ] recapture probabilities ๐1 ๐2 ๐1 (1 โ ๐2 )๐2 ๐3 ๐1 (1 โ ๐2 )๐2 (1 โ ๐3 )๐3 ๐4 ๐2 ๐3 ๐2 (1 โ ๐3 )๐3 ๐4 ๐ธ= 0 0 0 ๐3 ๐4 3 3 3 ๐๐๐ ๐๐๐ ๐ฟ= ๐=1 ๐=๐ 3 1โ ๐=1 ๐ ๐ โ 3๐=๐ ๐๐๐ ๐=๐ ๐๐๐ Can only ever estimate ๏ฆ3 p4 - model is parameter redundant or non-identifiable. Introduction โข In some models it is not possible to estimate all the parameters. This is termed parameter redundant / nonidentifiable. โข A model is parameter redundant if it can be reparameterised in terms of a smaller number of parameters. โข Capture-recapture example: ๏ฑ = [๏ฆ1, ๏ฆ2, ๏ฆ3, p2, p3, p4 ] ๏ฑR = [๏ฆ1, ๏ฆ2, p2, p3, ๏ข ] ๏ข = ๏ฆ3 p4 โข Parameter redundancy can be due to the model (extrinsic) or the data (intrinsic). โข Sometimes it is obvious that a model is parameter redundant (e.g. capture-recapture example), but in more complex models it is not necessarily obvious. Symbolic Method โข Symbolic methods can be used to detect parameter redundancy in less obvious cases (see for example Catchpole and Morgan, 1997, Cole et al, 2010). โข Firstly an exhaustive summary is required, ๐ฟ. An exhaustive summary is a vector of parameter combinations that uniquely define the model, e.g. recapture probabilities, Q. 3 3 3 ๐๐๐ ๐๐๐ ๐ฟ= ๐=1 ๐=๐ 3 1โ ๐=1 ๐ ๐ โ 3๐=๐ ๐๐๐ ๐=๐ ๐๐๐ โข Let ๐ฝ denote a vector of the p parameters. โข We then form a derivative matrix, ๐๐ฟ ๐ซ= . ๐๐ฝ Symbolic Method โข โข โข โข ๐๐ฟ ๐ซ= ๐๐ฝ Then calculate the rank, r, of ๐ซ. When r = p, model is full rank; we can estimate all parameters. When r < p, model is parameter redundant with deficiency d=pโr. In parameter redundant models we can also find a set of r estimable parameter combinations by solving ๐ถ๐ ๐ซ๐ป = ๐ then ๐๐ ๐ ๐ผ ๐=๐ ๐๐ ๐๐๐ al, 2010). = 0, ๐ = 1, โฆ ๐ (Catchpole et al, 1998 or Cole et Problems with the Symbolic Method โข In more complex models the derivative matrix is structurally too complex. Computer runs out of memory calculating the rank. โข Examples: Bio-kinetic compartment model of sludge respiration Douchain et al (2007) Cole et al (2010) Wandering Albatross Striped Sea Bass Multi-state models for sea birds Tag-return models for fish Hunter and Caswell (2009) Jiang et al (2007) Cole (2012) Cole and Morgan (2010) โข How do you proceed? โ Numerically โ can give the wrong results. โ Symbolically โ involves extending the theory and finding simpler exhaustive summaries (Cole et al, 2010). However this method is complex. โ Hybrid Symbolic-Numeric Method. Hybrid-Symbolic Numeric Method โข Calculate the derivative matrix, ๐๐ฟ ๐ซ= , ๐๐ฝ symbolically. โข Evaluate ๐ซ at a random point ๐ฝ๐ to give ๐ซ๐ . โข Calculate ๐๐ the rank of ๐ซ๐ . โข Repeat for 5 random points model, then ๐ = max ๐๐ . โข If the model is parameter redundant for any ๐ซ๐ with ๐๐ = ๐ solve ๐ถ๐ ๐ซ๐๐ = 0. The zeros in ๐ถ๐ indicate positions of parameters that can be estimated. Example Capture-Recapture โข ๏ฑ = [๏ฆ1, ๏ฆ2, ๏ฆ3, p2, p3, p4 ] Example โ multi-site capture-recapture model โข The capture-recapture models can be extended to studies with multiple site (Brownie et al, 1993). โข Example Canada Geese in 3 different geographical regions T=6 years. โข Geese tend to return to the same site โ memory model. (๐ก) โข Initial state probabilities:๐๐ ๐ก ๐ก ๐ก ๐ก for ๐ = 1,2 & ๐ก = 1, โฆ 6 (๐3 = 1 โ ๐1 โ ๐2 ) ๐ก โข Transition probabilities: ๐โ๐๐ for ๐, ๐ = 1,2,3 & ๐ก = 1, โฆ , 5 and ๐๐๐๐ for ๐, ๐, ๐ = 1,2,3 & ๐ก = 2, โฆ , 5. ๐ก โข Capture probabilities: ๐๐ for ๐ = 1,2,3 , ๐ก = 2, โฆ , 6. (p = 180 Parameters) Example โ Occupancy Models โข Rather than marking animals, occupancy models looks at whether or not a species is present at a particular site. โข Parameters: ๐ โ site is occupied, ๐ โ species is detected. โข Species detected at a site with probability ๐๐. โข Species not detected at a site with probability ๐ 1 โ ๐ + 1 โ ๐ = 1 โ ๐๐ โข Basic model is parameter redundant, so a robust design was developed, so that several surveys are conducted each season at each site, and assumed ๐ is the same for each survey. โข More complex models consider multiple sites and interactions between species. โข These models are not parameter redundant, but this assumes that every possible combination of occupied and unoccupied is observed. However parameter redundancy can be caused by the data (intrinsic parameter redundancy). Example โ Occupancy models โข Monitoring of amphibians in the Yellowstone and Grand Teton National Parks, USA (Gould et al, 2012). โข Two species: Columbian Spotted Frogs and Boreal Chorus Frogs. โข ๐ occupancy probabilities, ๐ detection probabilities. โข (s) dependence on site, (t) dependence of time, โ dependent on neither site nor time. Model ๐ โ ๐ โ ๐ ๐ ๐ โ ๐ โ ๐ ๐ ๐ ๐ก ๐ ๐ก ๐ ๐ก, ๐ ๐ โ ๐ ๐ก, ๐ ๐ ๐ก ๐ ๐ก, ๐ ๐ ๐ก, ๐ Rank 20 65 35 59 161 176 236 Deficiency No. pars 0 20 0 65 0 35 0 59 17 178 17 193 67 303 Example - Bio-kinetic compartment model of sludge respiration โข Non-linear compartment models can be used to describe the activated sludge-process (Dochain et al, 1995). โข The exogenous oxygen uptake, U, depends on the bio-degredation of two substrates, S. โข Parameters: ๐ = [๐1 , ๐1 0 , ๐๐๐๐ฅ1 , ๐พ๐1 , ๐2 , ๐2 0 , ๐๐๐๐ฅ2 , ๐พ๐2 , ๐] where Yi is the fraction of the pollutant Si which is not oxidised but converted into a new biocatalyst, X. The parameters ๏ญmax1 and ๏ญmax2 are rate constants, Km1 and Km2 are affinity constants. โข From extended symbolic method estimable parameter combinations: ๐๐๐๐ฅ๐ ๐ 1 โ ๐๐ , ๐พ๐๐ + ๐๐ 0 1 โ ๐๐ , ๐๐ (0)(1 โ ๐๐ ) ๐๐ Conclusion and future work โข The hybrid method can be used to find how many parameters can be estimated in a model. โข Hybrid method is much simpler to use than extended symbolic method. โข Can be added to standard software packages. For ecological models it is available in M-surge and E-surge. โข It can quickly give results about whether a particular data set is parameter redundant, even for several hundred parameters. โข However it currently is only applicable to a given number of years of data (ecological models) or substrates (sludge model). In the symbolic method there is an extension theorem that allows general results to be developed. Expanding the hybrid method to include the extension theorem is future work. โข In the parameter redundant model the hybrid method can currently only determine which of the original parameters are identifiable. Constraints needed to give an identifiable model can only be obtained by trial and error. The symbolic method can also give estimable parameter combinations. References โข โข โข โข โข โข โข โข โข โข โข โข โข โข โข Hybrid Numeric-Symbolic Method: Choquet, R. and Cole, D.J. (2012) A Hybrid Symbolic-Numerical Method for Determining Model Structure. Mathematical Biosciences, 236, p117. Symbolic Method: Cole, D.J., Morgan, B.J.T., Titterington, D.M. (2010) Mathematical Biosciences, 228, p16. Cole, D.J., Morgan, B.J.T. (2010), JABES, 15, p431. Catchpole, E. A., Morgan, B. J. T (1997) Biometrika, 84, p187. Catchpole, E. A., Morgan, B.J.T., Freeman, S. N. (1998) Biometrika, 85, p42. Cole, D.J. (2012) Journal of Ornithology , 152, p305. Other: Brownie, C. Hines, J., Nichols, J. et al (1993) Captureโrecapture, Biometrics, 49, p1173. Dochain, D, Vanrolleghem, P.A., Van Dale, M. (1995) Water Research, 29, p2571. Gould, W. R., Patla, D. A., Daley, R., et al. (2012). Wetlands, 32, p379. Hunter, C., Caswell, H. (2009) Environmental and Ecological Statistics vol 3, p. 797. Jiang, H.H., Pollock, K.H., Brownie, C. et al, (2007), JABES, 12, p 177 Lebreton, J. Morgan, B. J. T., Pradel R. and Freeman, S. N. (1995) Biometrics, 51, p1418.
© Copyright 2026 Paperzz