Econometric Analysis of Panel Data • Hypothesis Testing – Specification Tests • Fixed Effects vs. Random Effects – Heteroscedasticity – Autocorrelation • Serial Autocorrelation • Spatial Autocorrelation • More on Autocorrelation Hypothesis Testing • Heteroscedasticity 2 e yit xit' β ui eit , Var (ui ) u2i , Var (eit ) 2it ei • Serial Correlation vit 1 eit yit x β ui vit , vit i vit 1 eit • Spatial Correlation ' it yit xit' β ui vit , vit wij v jt eit j Hypothesis Testing • Heteroscedasticity yit xit' β it , it ui eit Var (ui ) u2i u2 hu (fi' u ), i 1,..., N (e.g., fi' xi' ) Var (eit ) e2it e2 he ( z it' e ), i 1,..., N , t 1,..., T (e.g., z it' xit' ) u2i e2 u2 hu (fi' u ) e2 2 Var ( it ) u e2it u2 e2 he (z it' e ) 2 2 2 ' ' ui eit u hu (fi u ) he ( z it e ) Note : h(.) 0, h(0) 1, h' (0) 0, u2 0, e2 0 A special case of e2i is e2i e2 he ( zi' e ), i 1,..., N then 2 u2 e2i u2 e2 he ( zi' e ) Hypothesis Testing Test for Homoscedasticity • If u2=0 (constant effects or pooled model), then yit xit' β ui eit Var (eit ) e2it e2 he (z it' e ) or e2 he ( zi' e ) • LM Test (Breusch and Pagan, 1980) 1 LM 2 0 ( e 0) G ' Z ( Z ' Z ) 1 Z 'G ~ 2 (# e ) u 2 G eˆ 2 / ˆ e2 1, ˆ e2 eˆ 'eˆ / NT , eˆ y Xβˆ uˆ Z [z it' , i 1,..., N , t 1,..., T ] ESS ~ 2 (# e ) 2 (2) Regress eˆ 2 on 0 Z e , obtain NTR 2 ~ 2 (# e ) (1) Regress [eˆ 2 / ˆ e2 1] on Z , obtain H0 : e 0 Hypothesis Testing Test for Homoscedasticity • If u2>0 (random effects), then yit xit' β ui eit Var (ui ) u2i u2 hu (fi'u ) Var (eit ) e2it e2 he (z it' e ) or e2 he ( zi' e ) • LM Tests (Baltagi, Bresson, and Pirott, 2006) H 0 : e 0 | u 0 H 0 : u 0 | e 0 H 0 : u 0, e 0 Hypothesis Testing Test for Homoscedasticity • Marginal LM Test H 0 : e 0 | u 0, u2 0 Regress ˆit2 on 0 z it' e , obtain NTR 2 ~ 2 (# e ) where ˆ uˆ eˆ y x' ˆ it i it it it (e.g., z it' xit' , not including constant ) • See, Montes-Rojas and Sosa-Escudero (2011) Hypothesis Testing Test for Homoscedasticity 2 • Marginal LM Test H 0 : u 0 | e 0, u 0 Regress ˆi2 on 0 fi' u , obtain NR 2 ~ 2 (# u ) T 1 where ˆi ˆit , ˆit uˆi eˆit yit xit' ˆ T t 1 (e.g ., fi' xi' ) • Joint LM Test H 0 : u 0, e 0 | u2 0 – Sum of the above two marginal test statistics (approximately) – See, Montes-Rojas and Sosa-Escudero (2011) Hypothesis Testing Testing for Homoscedasticity • References – Batagi, B.H., G. Bresson, and A. Priotte, Joint LM Test for Homoscedasticity in a One-Way Error Component Model, Journal of Econometrics, 134, 2006, 401-417. – Breusch, T. and A. Pagan, “A Simple Test of Heteroscedasticity and Random Coefficient Variations,” Econometrica, 47, 1979, 1287-1294. – Montes-Rojas, G. and W. Sosa-Escudero, Robust Tests for Heteroscedasticity in the One-Way Error Components Model, Journal of Econometrics, 2011, forthcoming. Hypothesis Testing • Serial Correlation AR(1) in a Random Effects Model yit xit' β ui vit , ui ~ iid (0, u2 ) vit vit 1 eit ~ iid (0, e2 ) • LM Test for Serial Correlation and Random Effects H 0 : u2 0, 0 H 0 : 0 (assuming u2 0 or pooled model) H 0 : 0 (assuming u2 0 or random effects model) Hypothesis Testing Test for Serial Correlation • LM Test Statistics: Notations Based on OLS residuals of the restricted model (i.e. pooled model with no serial correlation) 2 eˆit ' eˆ ( I N J T )eˆ i 1 t 1 1 A 1 N T eˆ 'eˆ 2 ˆ e it N T i 1 t 1 N eˆ eˆ 1 B ' eˆ eˆ ' T eˆ eˆ i 1 t 2 N T it it 1 2 ˆ e it i 1 t 1 Hypothesis Testing Test for Serial Correlation • Marginal LM Test Statistic for a Pooled Model NT LM 0 ( 0) A2 ~ 2 (1) 2(T 1) 2 u – See Breusch and Pagan (1980) • Marginal LM Test Statistic for Serial Correlation NT 2 2 LM 2 0 ( 0) B ~ 2 (1) u (T 1) – See Breusch and Godfrey (1981) Hypothesis Testing Test for Serial Correlation • Robust LM Test Statistic NT 2 LM 0 ( 0) 2B A ~ 2 (1) 2(T 1)(1 2 / T ) * 2 u 2 NT 2 LM * 2 0 ( 0) B A / T ~ 2 (1) u (T 1)(1 2 / T ) • See Baltagi and Li (1995) Hypothesis Testing Test for Serial Correlation • Joint LM Test Statistic for Pooled Model with Serial Correlation NT LM ( 0, 0) A2 4 AB 2TB 2 ~ 2 (2) 2(T 1)(T 2) 2 u LM ( u2 0, 0) LM 0 ( u2 0) LM 2 0 ( 0) u LM * 0 ( u2 0) LM 2 0 ( 0) u LM 0 ( u2 0) LM * 2 0 ( 0) u • See Baltagi and Li (1995) Hypothesis Testing Test for Serial Correlation • LM Test Statistic for a Fixed Effects Model NT 2 eˆ 'eˆ 1 2 LM fixed effects ( 0) ~ (1) ' T 1 eˆ eˆ eˆ y Xβˆ residuals of mean deviation regression – See Baltagi, Econometric Analysis of Panel Data (2008) Hypothesis Testing Test for Serial Correlation • References – Breusch, T. and A. Pagan, “A Simple Test of Heteroscedasticity and Random Coefficient Variations,” Econometrica, 47, 1979, 1287-1294. – Breusch, T. and A. Pagan, “The LM Test and Its Applications to Model Specification in Econometrics,” Review of Economic Studies, 47, 1980, 239-254. – Breusch, T. and L.G. Godfrey, A Review of Recent Work on Testing for Autocorrelation in Dynamic Simultaneous Models, in D.A. Currie, R. Nobay and D. Peel (eds.), Macroeconomic Analysis, Essays in Macroeconomics and Economics (Croom Helm, London), 63-100. – Baltagi, B.H. and Q. Li, Testing AR(1) Against MA(1) Disturbances in an Error Components Model, Journal of Econometrics, 68, 1995, 133-151. Autocorrelation • AR(1) yit xit' β ui eit eit eit 1 it (t 1, 2,..., Ti ; i 1, 2,..., N ) • Assumptions E (it | xit' ) 0 Var (it | xit' ) 2 Var (eit | xit' ) e2 (1 2 ) 2 Cov(it , eit 1 ) 0, Cov(eit , ui ) 0, Cov (eit , xit' ) 0 Cov(ui , xit' ) 0 (random effects only ) Autocorrelation • AR(1) Model Estimation (Paris-Winsten) – Begin with =0, estimate the model yit xit' β ui eit eˆit yit xit' βˆ uˆi eˆ eˆ ˆ eˆ N Ti t 2 it it 1 Ti 2 i 1 t 1 it i 1 N – Transform variables according zit* zit ˆ zit 1 , t 1 zi*1 1 ˆ 2 zi1 Autocorrelation – Estimate the transformed model yit* x*'it β ui* eit* eˆit yit xit' βˆ uˆi eˆ eˆ ˆ eˆ N Ti t 2 it it 1 Ti 2 i 1 t 1 it i 1 N – Iterate until βˆ ̂ converges Autocorrelation • Notational Complexity with time lags in unbalanced panel data (Unbalanced unequal space panel data) i t zit zit-1 z*it 1 1 z11 . (1-2)1/2 z11 i t zit 1 2 z12 z11 z12 -z11 1 1 z11 1 3 . . . 1 2 z12 1 4 z14 . (1-2)1/2 z14 1 4 z14 1 5 z15 z14 z15 -z14 1 5 z15 2 1 z21 . (1-2)1/2 z21 2 1 z21 2 2 . . . 2 4 z24 2 3 . . . 2 5 z25 2 4 z24 . (1-2)1/2 z24 3 3 z33 2 5 z25 z24 z25 -z24 3 1 . . . 3 2 . . . 3 3 z33 . (1-2)1/2 z33 3 4 . z33 . 3 5 . . . Autocorrelation • Hypothesis Testing – Modified Durbin-Watson Test Statistic (Bhargava, Franzini, Narendranathan, 1982) d1 eˆ N Ti i 1 t 1 N i 1 it Ti eˆit 1 2 2 ˆ e t 1 it – LBI Test Statistic (Baltagi-Wu, 1999) • For unbalanced unequal spaced panel data Example: Investment Demand • Grunfeld and Griliches [1960] I it i Fit Cit it it it 1 eit ~ iid (0, e2 ) – i = 10 firms: GM, CH, GE, WE, US, AF, DM, GY, UN, IBM; t = 20 years: 1935-1954 – Iit = Gross investment – Fit = Market value – Cit = Value of the stock of plant and equipment
© Copyright 2026 Paperzz