Document

AMF271: FINANCIAL DERIVATIVES
First Semester, SY 2012-2013
Emmanuel Cabral
Finite Difference Method
Let ๐‘ข be a function on [๐‘Ž, ๐‘] such that
๐‘‘๐‘ข
๐‘‘๐‘ฅ
and
๐‘‘2 ๐‘ข
๐‘‘๐‘ฅ 2
exists for all ๐‘ฅ โˆˆ (๐‘Ž, ๐‘)
Subdivide [๐‘Ž, ๐‘] using the partition points ๐‘Ž = ๐‘ฅ0 , ๐‘ฅ1 , ๐‘ฅ2 โ€ฆ , ๐‘ฅ๐‘› = ๐‘
Let ๐‘ข = ๐‘“(๐‘ฅ)
๐‘ข๐‘– = ๐‘“(๐‘ฅ๐‘– ) for ๐‘– = 1,2, โ€ฆ , ๐‘›
The first and second-order finite difference formulas that approximate the first and second-order derivatives are given by the
following:
๐‘โˆ’๐‘Ž
โˆ†๐‘ฅ =
๐‘›
First-order Derivatives
Forward Difference
๐‘ข๐‘–+1 โˆ’ ๐‘ข๐‘–
๐ท๐‘ข๐‘– =
โˆ†๐‘ฅ
Remark: Slope of tangent is approximated by secant
Backward Difference
๐ท๐‘ข๐‘– =
๐‘ข๐‘– โˆ’ ๐‘ข๐‘–โˆ’1
โˆ†๐‘ฅ
Central Difference
Second-order Derivatives
Forward Difference
1 ๐‘ข๐‘–+1 โˆ’ ๐‘ข๐‘– ๐‘ข๐‘– โˆ’ ๐‘ข๐‘–โˆ’1
๐ท๐‘ข๐‘– = [
+
]
2
โˆ†๐‘ฅ
โˆ†๐‘ฅ
๐‘ข๐‘–+1 โˆ’ ๐‘ข๐‘–โˆ’1
=
2โˆ†๐‘ฅ
๐ท๐‘ข2๐‘–
๐‘ข๐‘–+2 โˆ’ ๐‘ข๐‘–+1 ๐‘ข๐‘–+1 โˆ’ ๐‘ข๐‘–
โˆ’
โˆ†๐‘ฅ
โˆ†๐‘ฅ
=
โˆ†๐‘ฅ
๐‘ข๐‘–+2 โˆ’ 2๐‘ข๐‘–+1 + ๐‘ข๐‘–
=
โˆ†๐‘ฅ 2
CHAPTER 20: BASIC NUMERICAL PROCEDURES
1
First Semester, SY 2012-2013
AMF271: FINANCIAL DERIVATIVES
Backward Difference
๐ท๐‘ข2๐‘–
Centered Difference
Emmanuel Cabral
๐‘ข๐‘– โˆ’ ๐‘ข๐‘–โˆ’1 ๐‘ข๐‘–โˆ’1 โˆ’ ๐‘ข๐‘–โˆ’2
โˆ’
โˆ†๐‘ฅ
โˆ†๐‘ฅ
=
โˆ†๐‘ฅ
๐‘ข๐‘– โˆ’ 2๐‘ข๐‘–โˆ’1 + ๐‘ข๐‘–โˆ’2
=
โˆ†๐‘ฅ 2
๐‘ข๐‘–+1 โˆ’ ๐‘ข๐‘– ๐‘ข๐‘– โˆ’ ๐‘ข๐‘–โˆ’1
โˆ’
โˆ†๐‘ฅ
โˆ†๐‘ฅ
โˆ†๐‘ฅ
๐‘ข๐‘–+1 โˆ’ 2๐‘ข๐‘– + ๐‘ข๐‘–โˆ’1
=
โˆ†๐‘ฅ 2
๐ท๐‘ข2๐‘– =
Now let ๐‘“ be a function of variables ๐‘ก and ๐‘†. Let ๐‘ก โˆˆ [0, ๐‘‡] and ๐‘† โˆˆ [0, ๐‘†max ]
Remark: The graph of ๐‘“ is a surface above the ๐‘†max × ๐‘‡ plane.
1
Subdivide [0, ๐‘‡] into ๐‘ subintervals each of length
๐‘
So [0, ๐‘‡] is partitioned into
0 = ๐‘ก0 < ๐‘ก1 < ๐‘ก2 < โ‹ฏ < ๐‘ก๐‘› = ๐‘‡
Subdivide [0, ๐‘†max ] into ๐‘€ + 1 equally spaced stock prices
0, ๐‘†1 , ๐‘†2 , โ€ฆ , ๐‘†๐‘€ = ๐‘†max
where ๐‘†๐‘—+1 โˆ’ ๐‘†๐‘— = โˆ†๐‘†
CHAPTER 20: BASIC NUMERICAL PROCEDURES
2
First Semester, SY 2012-2013
AMF271: FINANCIAL DERIVATIVES
โˆ†๐‘† =
Emmanuel Cabral
๐‘†max โˆ’ 0
๐‘‡
,
โˆ†๐‘ก =
๐‘€+1
๐‘
๐‘†1 = 1 โˆ™ โˆ†๐‘†
๐‘†๐‘— = ๐‘—โˆ†๐‘†
๐‘“๐‘–,๐‘— = ๐‘“(๐‘ก๐‘– , ๐‘†๐‘— ) = ๐‘“(๐‘–โˆ†๐‘ก, ๐‘—โˆ†๐‘†)
๐‘“๐‘–,๐‘—+1 โˆ’ ๐‘“๐‘–,๐‘—โˆ’1
๐œ•๐‘“
(๐‘ก๐‘– , ๐‘†๐‘— ) =
โŸ 2โˆ†๐‘†
๐œ•๐‘†
centered
difference
๐‘“๐‘–+1,๐‘— โˆ’ ๐‘“๐‘–,๐‘—
๐œ•๐‘“
(๐‘ก , ๐‘† ) =
โŸ โˆ†๐‘ก
๐œ•๐‘ก ๐‘– ๐‘—
forward
difference
๐‘“๐‘–,๐‘—+1 โˆ’ ๐‘“๐‘–,๐‘— ๐‘“๐‘–,๐‘— โˆ’ ๐‘“๐‘–,๐‘—โˆ’1
โˆ’
โˆ†๐‘†
โˆ†๐‘†
โˆ†๐‘†
๐‘“๐‘–,๐‘—+1 โˆ’ 2๐‘“๐‘–,๐‘— + ๐‘“๐‘–,๐‘—โˆ’1
=
โˆ†๐‘† 2
๐œ•2๐‘“
(๐‘ก , ๐‘† ) =
๐œ•๐‘† 2 ๐‘– ๐‘—
Substitute the above finite difference expressions in the Black-Scholes PDE
๐œ•๐‘“
๐œ•๐‘“ 1 2 2 ๐œ• 2 ๐‘“
+ (๐‘Ÿ โˆ’ ๐‘ž)๐‘†
+ ๐œŽ ๐‘†
= ๐‘Ÿ๐‘“
๐œ•๐‘ก
๐œ•๐‘† 2
๐œ•๐‘† 2
where ๐‘ž is the continuous dividend yield.
Let ๐‘“ be the value of a put option.
First assume European.
The boundary conditions are as follows:
๐‘“(๐‘‡, ๐‘†) = (๐พ โˆ’ ๐‘†๐‘‡ , 0)+
Implicit Method
๐‘“๐‘–+1,๐‘— โˆ’ ๐‘“๐‘–,๐‘—
๐‘“๐‘–,๐‘—+1 โˆ’ ๐‘“๐‘–,๐‘—โˆ’1 1 2 2 2 ๐‘“๐‘–,๐‘—+1 โˆ’ 2๐‘“๐‘–,๐‘— + ๐‘“๐‘–,๐‘—โˆ’1
+ (๐‘Ÿ โˆ’ ๐‘ž) ๐‘—โˆ†๐‘†
+ ๐œŽ ๐‘—โŸโˆ†๐‘†
= ๐‘Ÿ๐‘“๐‘–,๐‘—
โŸ
โˆ†๐‘ก
2โˆ†๐‘†
2
โˆ†๐‘† 2
2
๐‘†๐‘—
๐‘†๐‘—
1
1
(๐‘“๐‘–+1,๐‘— โˆ’ ๐‘“๐‘–,๐‘— ) + (๐‘Ÿ โˆ’ ๐‘ž)๐‘—โˆ†๐‘ก(๐‘“๐‘–,๐‘—+1 โˆ’ ๐‘“๐‘–,๐‘—โˆ’1 ) + ๐œŽ 2 ๐‘— 2 โˆ†๐‘ก(๐‘“๐‘–,๐‘—+1 โˆ’ 2๐‘“๐‘–,๐‘— + ๐‘“๐‘–,๐‘—โˆ’1 ) = ๐‘Ÿโˆ†๐‘ก๐‘“๐‘–,๐‘—
2
2
CHAPTER 20: BASIC NUMERICAL PROCEDURES
3
AMF271: FINANCIAL DERIVATIVES
First Semester, SY 2012-2013
๐‘“๐‘–+1,๐‘—
Emmanuel Cabral
1
1
1
1
= โˆ’๐‘“๐‘–,๐‘—โˆ’1 [ ๐œŽ 2 ๐‘— 2 โˆ†๐‘ก โˆ’ (๐‘Ÿ โˆ’ ๐‘ž)๐‘—โˆ†๐‘ก] + ๐‘“๐‘–,๐‘— [1 + ๐œŽ 2 ๐‘— 2 โˆ†๐‘ก + ๐‘Ÿโˆ†๐‘ก] + ๐‘“๐‘–,๐‘—+1 [โˆ’ (๐‘Ÿ โˆ’ ๐‘ž)๐‘—โˆ†๐‘ก โˆ’ ๐œŽ 2 ๐‘— 2 โˆ†๐‘ก]
2
2
2
2
๐‘“๐‘–+1,๐‘— = ๐‘Ž๐‘— ๐‘“๐‘–,๐‘—โˆ’1 + ๐‘๐‘— ๐‘“๐‘–,๐‘— + ๐‘๐‘— ๐‘“๐‘–,๐‘—+1
where
1
1
(๐‘Ÿ โˆ’ ๐‘ž)๐‘—โˆ†๐‘ก โˆ’ ๐œŽ 2 ๐‘— 2 โˆ†๐‘ก
2
2
๐‘๐‘— = 1 + ๐œŽ 2 ๐‘— 2 โˆ†๐‘ก + ๐‘Ÿโˆ†๐‘ก
1
๐‘๐‘— = โˆ’ [(๐‘Ÿ โˆ’ ๐‘ž)๐‘—โˆ†๐‘ก + ๐œŽ 2 ๐‘— 2 โˆ†๐‘ก]
2
๐‘Ž๐‘— =
At the boundary nodes,
๐‘“๐‘,๐‘— = max(๐พ โˆ’ ๐‘—โˆ†๐‘†, 0) ,
๐‘— = 0,1, โ€ฆ , ๐‘€
๐‘“๐‘–,0 = ๐พ,
๐‘– = 0,1, โ€ฆ , ๐‘
๐‘“๐‘–,๐‘€ = 0,
๐‘– = 0,1, โ€ฆ , ๐‘
Remark: Values of ๐‘“ at the inner nodes are unknown.
๐‘—
๐‘—
๐‘—
โ‹ฎ
๐‘—
๐‘—
= 0:
= 1:
= 2:
๐‘“๐‘โˆ’1,0 = ๐‘“๐‘,0 = ๐พ (BC)
๐‘Ž1 ๐‘“๐‘โˆ’1,0 + ๐‘1 ๐‘“๐‘โˆ’1,1 + ๐‘1 ๐‘“๐‘โˆ’1,2 = ๐‘“๐‘,1
๐‘Ž2 ๐‘“๐‘โˆ’1,1 + ๐‘2 ๐‘“๐‘โˆ’1,2 + ๐‘2 ๐‘“๐‘โˆ’1,3 = ๐‘“๐‘,2
= ๐‘€ โˆ’ 1:
= ๐‘€:
๐‘Ž๐‘€โˆ’1 ๐‘“๐‘โˆ’1,๐‘€โˆ’2 + ๐‘๐‘€โˆ’1 ๐‘“๐‘โˆ’1,๐‘€โˆ’1 + ๐‘๐‘€โˆ’1 ๐‘“๐‘โˆ’1,๐‘€ = ๐‘“๐‘,๐‘€โˆ’1
๐‘“๐‘โˆ’1,๐‘€ = ๐‘“๐‘,๐‘€ = ๐พ (BC)
โŸนWe have a system of ๐‘€ + 1 equations with ๐‘€ โˆ’ 1 unknown (values of ๐‘“ at interior nodes)
So, to get the values of ๐‘“๐‘โˆ’1,๐‘— for ๐‘— = 1,2, โ€ฆ , ๐‘€ โˆ’ 1, we need to solve the system
๐‘“๐‘โˆ’1,0
๐‘“๐‘,0
๐‘€+1
โž๐‘Ž1 ๐‘1 ๐‘1 0 โ€ฆ
๐‘“
๐‘“๐‘,1
0
0
๐‘โˆ’1,1
๐‘“
๐‘“๐‘,2
0 ๐‘Ž2 ๐‘2 ๐‘2 โ€ฆ
0
0
๐‘โˆ’1,2
โ‹ฎ
โ‹ฎ
๐‘€ โˆ’ 1 0 0 ๐‘Ž3 ๐‘3 โ€ฆ
=
0
0
๐‘“๐‘โˆ’1,๐‘€โˆ’2
๐‘“๐‘,๐‘€โˆ’2
โ‹ฎ
โ‹ฎ
โ‹ฎ
โ‹ฎ โ‹ฑ
โ‹ฎ
โ‹ฎ
[ 0 0 0 0 โ€ฆ ๐‘๐‘€โˆ’1 ๐‘๐‘€โˆ’1 ] ๐‘“๐‘โˆ’1,๐‘€โˆ’1
๐‘“๐‘,๐‘€โˆ’1
{
[ ๐‘“๐‘โˆ’1,๐‘€ ] [ ๐‘“๐‘,๐‘€ ]
Add the two boundary conditions to make an ๐‘€ + 1 × ๐‘€ + 1 matrix
๐ด
โž1
๐‘Ž1
0
0
โ‹ฎ
0
[0
0
๐‘1
๐‘Ž2
0
โ‹ฎ
0
0
0
๐‘1
๐‘2
๐‘Ž3
โ‹ฎ
0
0
0
0
๐‘2
๐‘3
โ‹ฎ
0
0
โ€ฆ
โ€ฆ
โ€ฆ
โ€ฆ
โ‹ฑ
โ€ฆ
โ€ฆ
0
0
0
0
โ‹ฎ
0
0
0
0
โ‹ฎ
๐‘Ž๐‘€โˆ’1
0
๐‘๐‘€โˆ’1
0
0
0
0
0
โ‹ฎ
๐‘“๐‘โˆ’1,0
๐‘“๐‘โˆ’1,1
๐‘“๐‘โˆ’1,2
โ‹ฎ
๐‘“๐‘โˆ’1,๐‘€โˆ’2
๐‘๐‘€โˆ’1 ๐‘“๐‘โˆ’1,๐‘€โˆ’1
1 ] [ ๐‘“๐‘โˆ’1,๐‘€ ]
=
๐‘“๐‘,0
๐‘“๐‘,1
๐‘“๐‘,2
โ‹ฎ
๐‘“๐‘,๐‘€โˆ’2
๐‘“๐‘,๐‘€โˆ’1
[ ๐‘“๐‘,๐‘€ ]
That is,
CHAPTER 20: BASIC NUMERICAL PROCEDURES
4
First Semester, SY 2012-2013
AMF271: FINANCIAL DERIVATIVES
๐‘“ ๐‘โˆ’1 =
and ๐ด๐‘“ ๐‘โˆ’1 = ๐‘“ ๐‘ , where ๐‘“ ๐‘ is known.
โŸน ๐‘“ ๐‘โˆ’1 = ๐ดโˆ’1 ๐‘“ ๐‘ assuming ๐ด is invertible
๐‘“๐‘โˆ’1,0
๐‘“๐‘โˆ’1,1
๐‘“๐‘โˆ’1,2
โ‹ฎ
, ๐‘“๐‘ =
๐‘“๐‘โˆ’1,๐‘€โˆ’2
๐‘“๐‘โˆ’1,๐‘€โˆ’1
[ ๐‘“๐‘โˆ’1,๐‘€ ]
Emmanuel Cabral
๐‘“๐‘,0
๐‘“๐‘,1
๐‘“๐‘,2
โ‹ฎ
๐‘“๐‘,๐‘€โˆ’2
๐‘“๐‘,๐‘€โˆ’1
[ ๐‘“๐‘,๐‘€ ]
Proceeding backwards, we have
๐‘“ ๐‘โˆ’2 = ๐ดโˆ’1 ๐‘“ ๐‘โˆ’1
โ‹ฎ
๐‘“ 1 = ๐ดโˆ’1 ๐‘“ 2
Algorithm for European (Implicit Method)
1. Input values of ๐‘“(๐ต, ๐ถ), ๐ด (given from parameter)
2. For ๐‘– = ๐‘ โˆ’ 1 to 1
๐‘“ ๐‘– = ๐ดโˆ’1 ๐‘“ ๐‘–
Algorithm for American (Implicit Method)
1. Input values of ๐‘“(๐ต, ๐ถ), ๐ด (given from parameter)
2. For ๐‘– = 1 to ๐‘ โˆ’ 1
๐‘“ ๐‘– = ๐ดโˆ’1 ๐‘“ ๐‘–
For ๐‘— = 1 to ๐‘€ โˆ’ 1
๐‘“(๐‘—) = max(๐‘“(๐‘—), ๐พ โˆ’ ๐‘—โˆ†๐‘†)
Control Variate Technique
๐‘“๐ด = ๐‘“๐ดโˆ— โˆ’ ๐‘“๐ตโˆ— + ๐‘“๐ต
where ๐‘“๐ดโˆ— : Value of American option obtained from simulation (e.g., finite difference)
๐‘“๐ตโˆ— : Value of European option obtained from simulation (e.g., finite difference)
๐‘“๐ต : Value of European option obtained analytically (Black-Scholes)
Example
๐‘“๐ดโˆ— = 4.07
๐‘“๐ตโˆ— = 3.91
๐‘“๐ต = 4.08
โŸน ๐‘“๐ด = (4.07 โˆ’ 3.91) โˆ’ 4.08
Convertible Bonds
Convertible Bond: Bondholder has the option to convert the bond into equity
Callable Bond
Example 26.1
Modify the problem by letting ๐œ† = 0 (no default risk)
1
๐‘ข = ๐‘’ ๐œŽโˆšโˆ†๐‘ก , ๐‘‘ =
๐‘Ž = ๐‘’ ๐‘Ÿโˆ†๐‘ก , โˆ†๐‘ก =
๐‘=
๐‘Žโˆ’๐‘‘
๐‘ขโˆ’๐‘‘
๐‘ข
3
,๐‘‡=
12
9
12
,๐‘ž = 1โˆ’๐‘
Homework:
CHAPTER 20: BASIC NUMERICAL PROCEDURES
5
First Semester, SY 2012-2013
1.
2.
AMF271: FINANCIAL DERIVATIVES
Emmanuel Cabral
Construct a binomial tree to price the convertible bond
Price the same convertible bond using finite difference.
Non-Dividend Stock
where ๐‘“ is the price of the derivative
๐œ•๐‘“
๐œ•๐‘“ 1 2 2 ๐œ• 2 ๐‘“
+ ๐‘Ÿ๐‘†
+ ๐œŽ ๐‘†
= ๐‘Ÿ๐‘“
๐œ•๐‘ก
๐œ•๐‘† 2
๐œ•๐‘† 2
Boundary Condition
๐‘“(๐‘‡, ๐‘†๐‘‡ ) = max(2๐‘†๐‘‡ , 100)
Finite Difference Methods (Summary)
Implicit Finite Difference Method
Explicit Finite Difference Method
Comparison Between Implicit and Explicit Methods
Other Remarks
- d
The Explicit Method and its Relationship with the Trinomial Model
Change of Variable
For better computational efficiency, we can let Z = ln S so that the BS PDE becomes
Let ๐‘ = ln ๐‘†
๐œ•๐‘“ ๐œ•๐‘“ ๐œ•๐‘
=
๐œ•๐‘† ๐œ•๐‘ ๐œ•๐‘†
๐œ•๐‘“ 1
=
๐œ•๐‘ ๐‘†
๐œ•๐‘“
๐œ•๐‘“
1
๐œ•2 ๐‘“
BS: + ๐‘Ÿ๐‘† + ๐œŽ 2 ๐‘† 2 2 = ๐‘Ÿ๐‘“
๐œ•๐‘ก
๐œ•๐‘†
2
๐œ•๐‘†
Implied Volatility
Let ๐‘๐ต๐‘† be the price (Black-Scholes) of a European call
๐‘๐‘š be the market price of the same European call
where ๐‘†0 , ๐พ, ๐‘‡, ๐‘Ÿ are given
Implied volatility is the volatility implied from observed option prices.
Given ๐‘๐‘š , ๐‘†0 , ๐พ, ๐‘‡, ๐‘Ÿ, what is ๐‘๐‘š ? (Not the same as historical volatilitly)
In practice, traders use BS model to estimate ๐œŽimp from ๐‘๐‘š .
Historical volatility is backward looking.
Implied volatility is forward looking, i.e., it reflects the marketโ€™s opinion about the volatility of a particular stock (market
outlook)
CHAPTER 20: BASIC NUMERICAL PROCEDURES
6
First Semester, SY 2012-2013
AMF271: FINANCIAL DERIVATIVES
Emmanuel Cabral
In theory, ๐œŽ should be independent of ๐พ and ๐‘‡.
In practice, ๐œŽ changes with ๐พ and ๐‘‡.
๐œŽ vs ๐พ: volatility smile
๐œŽ vs ๐‘‡: volatility term structure
๐œŽ vs ๐พ, ๐‘‡ โ†’ volatility surface
Option prices are usually quoted in terms of volatility.
(Derivagem can be used to estimate implied volatility for a given ๐พ, ๐‘†0 )
To get the volatility smile for many ๐พ values, we use a program, e.g., scilab
Numerical Method for Implied Volatility
Newtonโ€™s Method of Root Finding
Suppose we want to solve the equation ๐‘“(๐‘ฅ) = ๐‘˜, where ๐‘˜ is a constant. We want the root of this equation.
First, let ๐น(๐‘ฅ) = ๐‘“(๐‘ฅ) โˆ’ ๐‘˜. We are solving ๐น(๐‘ฅ) = 0
Assuming that ๐น is differentiable at ๐‘ฅ0 , we get the tangent line to ๐น at ๐‘ฅ0 :
slope of tangent = ๐น โ€ฒ (๐‘ฅ0 ) =
๐‘ฆโˆ’๐น(๐‘ฅ0 )
๐‘ฅโˆ’๐‘ฅ0
(๐‘ฅ, ๐‘ฆ) is an arbitrary point on the tangent line.
This tangent line crosses the ๐‘ฅ โˆ’ axis at
๐‘ฅ1 = ๐‘ฅ0 โˆ’
๐น(๐‘ฅ0 )
๐น โ€ฒ (๐‘ฅ0 )
So ๐‘ฅ1 becomes the new estimate of the root.
Repeat the process:
๐‘ฅ๐‘›+1 = ๐‘ฅ๐‘› โˆ’
๐น(๐‘ฅ๐‘› )
๐น โ€ฒ (๐‘ฅ๐‘› )
Now, let ๐‘ = market price of a European call with given ๐‘†0 , ๐พ, ๐‘‡, ๐‘Ÿ.
Let ๐‘“(๐œŽ) = ๐‘ where ๐‘“ is now the BS formula
๐น(๐œŽ) = ๐‘“(๐œŽ) โˆ’ ๐‘.
๐‘“(๐œŽ) โˆ’ ๐‘
๐‘“(๐œŽ) โˆ’ ๐‘
๐œŽ๐‘›+1 = ๐œŽ๐‘› โˆ’
= ๐œŽ๐‘› โˆ’
โ€ฒ
(๐œŽ)
๐น
๐‘“ โ€ฒ (๐œŽ)
Also,
๐‘“(๐œŽ) = ๐‘†0 โ„•(๐‘‘1 ) โˆ’ ๐พ๐‘’ โˆ’๐‘Ÿ๐‘‡ โ„•(๐‘‘2 )
๐‘†
๐œŽ2
๐‘†
๐œŽ2
ln ( 0 ) + (๐‘Ÿ + ๐‘‡)
ln ( 0 ) + (๐‘Ÿ โˆ’ ๐‘‡)
๐พ
2
๐พ
2
๐‘‘1 =
, ๐‘‘2 =
๐œŽโˆš๐‘‡
๐œŽโˆš๐‘‡
CHAPTER 20: BASIC NUMERICAL PROCEDURES
7
First Semester, SY 2012-2013
๐‘“ โ€ฒ (๐œŽ) = ๐‘†0
1
โˆš2๐œ‹
๐‘‘12
๐‘’โˆ’ 2
AMF271: FINANCIAL DERIVATIVES
Emmanuel Cabral
๐œ•๐‘‘1
1 โˆ’๐‘‘22 ๐œ•๐‘‘2
โˆ™
โˆ’๐พ
๐‘’ 2 โˆ™
โŸ
โŸ
๐œ•๐œŽ
๐œ•๐œŽ
โˆš2๐œ‹
?
?
Next exercise: Plot a volatility smile. (Currency option or equity option)
Implied Volatility
Let ๐‘๐ต๐‘† , ๐‘๐ต๐‘† be the European call and put prices respectively from Black-Scholes formula. Let ๐‘๐‘š and ๐‘๐‘š be the corresponding
call and put market prices.
In the absence of arbitrage opportunities, we have
๐‘๐‘š + ๐พ๐‘’ โˆ’๐‘Ÿ๐‘‡ = ๐‘๐‘š + ๐‘†0 ๐‘’ โˆ’๐‘ž๐‘‡
where ๐‘ž = continuous dividend yield
Put-call parity can also be verified for the Black-Scholes model. That is
๐‘๐ต๐‘† + ๐พ๐‘’ โˆ’๐‘Ÿ๐‘‡ = ๐‘๐ต๐‘† + ๐‘†0 ๐‘’ โˆ’๐‘ž๐‘‡
โŸน ๐‘๐ต๐‘† โˆ’ ๐‘๐‘š = ๐‘๐ต๐‘† โˆ’ ๐‘๐‘š
Discrepancy between BS and MKT prices should be the same for both call and put with the same strike and maturity.
Remark: ๐œŽimp is the volatility, which when substituted into the BS model gives ๐‘๐ต๐‘† = ๐‘๐‘š .
๏‚ท If ๐œŽ = ๐œŽimp , we have ๐‘๐ต๐‘† โˆ’ ๐‘๐‘š = ๐‘๐ต๐‘† โˆ’ ๐‘๐‘š = 0. Note that ๐‘๐ต๐‘† can be obtained from ๐‘๐ต๐‘† via BS model using ๐œŽ = ๐œŽimp . So
๐‘๐‘š = ๐‘๐ต๐‘† with ๐œŽ = ๐œŽimp
๏‚ท ๐œŽimp should be the same for both put and call with the same time to maturity ๐‘‡, and strike price ๐พ.
๏‚ท โˆ€๐‘‡, ๐พ, the correct volatility to use with BS model to price the European call should be the same as that used to price
the European put.
Volatility Smile: ๐ˆ๐ข๐ฆ๐ฉ vs ๐‘ฒ
The smile shifts with ๐‘†0 , the current asset price.
The smile is more stable if it is taken as the relationship with ๐พโ„๐‘† , i.e., ๐œŽimp vs ๐พโ„๐‘†
0
0
Volatility Term Structure: ๐ˆ๐ข๐ฆ๐ฉ vs ๐‘ป
Traders allow implied volatility to depend on the remaining time to maturity.
Homework
1. For a given maturity ๐‘‡, construct a volatility smile, i.e., ๐œŽimp vs ๐พโ„๐‘†
0
2.
3.
4.
Do this for other maturities ๐‘‡2 , ๐‘‡3 , โ€ฆ , ๐‘‡๐‘›
Steps 1 and 2 will help create your volatility surface (similar to table in p.417)
Use your volatility surface to price a call or put with intermediate maturity and intermediate ๐พโ„๐‘† value using 20
dimensional linear interpolation. (Create your own hypothetical example.)
Remarks
1. BS model is a sophisticated interpolation tool used by traders for ensuring that an option is priced consistently with
market prices of other actively traded options.
2. Replacing the BS model may change the volatility surface but actual prices quoted in the market would not change
appreciably.
The Implied Risk-Neutral Probability
(Implied Probability Distribution of an Underlying Asset Price)
BS Model assumes lognormal risk-neutral probability distribution of asset prices
๐‘‘๐‘†๐‘ก
= ๐‘Ÿ๐‘‘๐‘ก + ๐œŽ๐‘‘๐‘Š
๐‘†๐‘ก
1 2
)๐‘‡+๐œŽ๐‘Š
๐‘†๐‘ก = ๐‘†0 ๐‘’ (๐‘Ÿโˆ’2๐œŽ
๐‘ก
CHAPTER 20: BASIC NUMERICAL PROCEDURES
8
First Semester, SY 2012-2013
AMF271: FINANCIAL DERIVATIVES
Emmanuel Cabral
1
ln(๐‘†๐‘‡ ) ~๐’ฉ (ln ๐‘†0 + (๐‘Ÿ โˆ’ ๐œŽ 2 ) ๐‘‡ , ๐œŽ 2 ๐‘‡)
2
Actual market prices give a slightly different risk-neutral probability distribution.
Determining Implied Risk-Neutral Probability Distributions from Volatility Smile
The price of a European call on an asset with strike of ๐พ and maturity ๐‘‡ is given by
๐‘ = ๐‘’ โˆ’๐‘Ÿ๐‘‡ ๐”ผ[(๐‘†
โŸ ๐‘‡ โˆ’ ๐พ)+ ]
โˆž
under risk neutral
prob distribution
= โˆซ (๐‘†๐‘‡ โˆ’ ๐พ)๐‘”(๐‘†๐‘‡ )๐‘‘๐‘†๐‘‡
๐พ
where ๐‘”(๐‘†๐‘‡ ) = risk-neutral pdf of ๐‘†๐‘‡ . What is ๐‘”?
โˆž
๐œ•๐‘
= โˆ’๐‘’ โˆ’๐‘Ÿ๐‘‡ โˆซ ๐‘”(๐‘†๐‘‡ )๐‘‘๐‘†๐‘‡
๐œ•๐พ
๐พ
๐œ•2๐‘
โˆ’๐‘Ÿ๐‘‡
= ๐‘’ ๐‘”(๐พ),
by First Fundamental Theorem of Calculus
๐œ•๐พ 2
๐œ•2๐‘
๐‘”(๐พ) = ๐‘’ ๐‘Ÿ๐‘‡
๐œ•๐พ 2
Let ๐‘ = ๐‘(โˆ™, ๐พ)
๐œ•2๐‘
=
๐œ•๐พ 2
๐‘(โˆ™, ๐พ + ๐›ฟ) โˆ’ ๐‘(โˆ™, ๐พ) ๐‘(โˆ™, ๐พ) โˆ’ ๐‘(โˆ™, ๐พ โˆ’ ๐›ฟ)
โˆ’
๐›ฟ
๐›ฟ
๐›ฟ
๐‘
๐‘
๐‘
1
2
3
โž
โž ๐พ) + โž
๐‘(โˆ™, ๐พ + ๐›ฟ) โˆ’ 2 ๐‘(โˆ™,
๐‘(โˆ™, ๐พ โˆ’ ๐›ฟ)
=
๐›ฟ2
where ๐‘1 , ๐‘2 , ๐‘3 are three European call prices with strike ๐พ + ๐›ฟ, ๐พ, ๐พ โˆ’ ๐›ฟ respectively.
Then,
๐‘1 โˆ’ 2๐‘2 + ๐‘3
๐‘”(๐พ) = ๐‘’ ๐‘Ÿ๐‘‡ [
]
๐›ฟ2
is the pdf evaluated at ๐พ
Read Example 19A.1
HW: From one of the volatility smiles that you constructed, obtain a risk-neutral probability distribution for the asset
price.
Example 19A.1
๐‘”(๐พ) = ๐‘’ ๐‘Ÿ๐‘‡
Let ๐‘†๐‘‡ be in one of the intervals [๐พ โˆ’ ๐›ฟ, ๐พ + ๐›ฟ]
๐›ฟ = 0.5
Assume that ๐‘” is constant between ๐พ = 6 and ๐พ = 7
Let ๐‘†๐‘‡ be inside [6,7]
๐‘”(๐‘†๐‘‡ ) = ๐‘’ ๐‘Ÿ๐‘‡
๐œ•2๐‘
๐œ•๐พ 2
(๐‘1 โˆ’ 2๐‘2 + ๐‘3 )
0.52
Exercise 17.20
Spot call option ๐‘ =?
3
๐‘‡=
12
๐น0 = 12
CHAPTER 20: BASIC NUMERICAL PROCEDURES
9
First Semester, SY 2012-2013
AMF271: FINANCIAL DERIVATIVES
Emmanuel Cabral
๐พ = 13
๐‘Ÿ = 4%
๐œŽ = 25%
Blackโ€™s Model for futures call: ๐‘ = [๐น0 โ„•(๐‘‘1 ) โˆ’ ๐พโ„•(๐‘‘2 )]๐‘’ โˆ’๐‘Ÿ๐‘‡
where ๐‘‘1 =
ln(
12
0.252 3
)+(4+
)( )
13
2
12
0.25โˆš
3
12
CHAPTER 20: BASIC NUMERICAL PROCEDURES
10