AMF271: FINANCIAL DERIVATIVES
First Semester, SY 2012-2013
Emmanuel Cabral
Finite Difference Method
Let ๐ข be a function on [๐, ๐] such that
๐๐ข
๐๐ฅ
and
๐2 ๐ข
๐๐ฅ 2
exists for all ๐ฅ โ (๐, ๐)
Subdivide [๐, ๐] using the partition points ๐ = ๐ฅ0 , ๐ฅ1 , ๐ฅ2 โฆ , ๐ฅ๐ = ๐
Let ๐ข = ๐(๐ฅ)
๐ข๐ = ๐(๐ฅ๐ ) for ๐ = 1,2, โฆ , ๐
The first and second-order finite difference formulas that approximate the first and second-order derivatives are given by the
following:
๐โ๐
โ๐ฅ =
๐
First-order Derivatives
Forward Difference
๐ข๐+1 โ ๐ข๐
๐ท๐ข๐ =
โ๐ฅ
Remark: Slope of tangent is approximated by secant
Backward Difference
๐ท๐ข๐ =
๐ข๐ โ ๐ข๐โ1
โ๐ฅ
Central Difference
Second-order Derivatives
Forward Difference
1 ๐ข๐+1 โ ๐ข๐ ๐ข๐ โ ๐ข๐โ1
๐ท๐ข๐ = [
+
]
2
โ๐ฅ
โ๐ฅ
๐ข๐+1 โ ๐ข๐โ1
=
2โ๐ฅ
๐ท๐ข2๐
๐ข๐+2 โ ๐ข๐+1 ๐ข๐+1 โ ๐ข๐
โ
โ๐ฅ
โ๐ฅ
=
โ๐ฅ
๐ข๐+2 โ 2๐ข๐+1 + ๐ข๐
=
โ๐ฅ 2
CHAPTER 20: BASIC NUMERICAL PROCEDURES
1
First Semester, SY 2012-2013
AMF271: FINANCIAL DERIVATIVES
Backward Difference
๐ท๐ข2๐
Centered Difference
Emmanuel Cabral
๐ข๐ โ ๐ข๐โ1 ๐ข๐โ1 โ ๐ข๐โ2
โ
โ๐ฅ
โ๐ฅ
=
โ๐ฅ
๐ข๐ โ 2๐ข๐โ1 + ๐ข๐โ2
=
โ๐ฅ 2
๐ข๐+1 โ ๐ข๐ ๐ข๐ โ ๐ข๐โ1
โ
โ๐ฅ
โ๐ฅ
โ๐ฅ
๐ข๐+1 โ 2๐ข๐ + ๐ข๐โ1
=
โ๐ฅ 2
๐ท๐ข2๐ =
Now let ๐ be a function of variables ๐ก and ๐. Let ๐ก โ [0, ๐] and ๐ โ [0, ๐max ]
Remark: The graph of ๐ is a surface above the ๐max × ๐ plane.
1
Subdivide [0, ๐] into ๐ subintervals each of length
๐
So [0, ๐] is partitioned into
0 = ๐ก0 < ๐ก1 < ๐ก2 < โฏ < ๐ก๐ = ๐
Subdivide [0, ๐max ] into ๐ + 1 equally spaced stock prices
0, ๐1 , ๐2 , โฆ , ๐๐ = ๐max
where ๐๐+1 โ ๐๐ = โ๐
CHAPTER 20: BASIC NUMERICAL PROCEDURES
2
First Semester, SY 2012-2013
AMF271: FINANCIAL DERIVATIVES
โ๐ =
Emmanuel Cabral
๐max โ 0
๐
,
โ๐ก =
๐+1
๐
๐1 = 1 โ โ๐
๐๐ = ๐โ๐
๐๐,๐ = ๐(๐ก๐ , ๐๐ ) = ๐(๐โ๐ก, ๐โ๐)
๐๐,๐+1 โ ๐๐,๐โ1
๐๐
(๐ก๐ , ๐๐ ) =
โ 2โ๐
๐๐
centered
difference
๐๐+1,๐ โ ๐๐,๐
๐๐
(๐ก , ๐ ) =
โ โ๐ก
๐๐ก ๐ ๐
forward
difference
๐๐,๐+1 โ ๐๐,๐ ๐๐,๐ โ ๐๐,๐โ1
โ
โ๐
โ๐
โ๐
๐๐,๐+1 โ 2๐๐,๐ + ๐๐,๐โ1
=
โ๐ 2
๐2๐
(๐ก , ๐ ) =
๐๐ 2 ๐ ๐
Substitute the above finite difference expressions in the Black-Scholes PDE
๐๐
๐๐ 1 2 2 ๐ 2 ๐
+ (๐ โ ๐)๐
+ ๐ ๐
= ๐๐
๐๐ก
๐๐ 2
๐๐ 2
where ๐ is the continuous dividend yield.
Let ๐ be the value of a put option.
First assume European.
The boundary conditions are as follows:
๐(๐, ๐) = (๐พ โ ๐๐ , 0)+
Implicit Method
๐๐+1,๐ โ ๐๐,๐
๐๐,๐+1 โ ๐๐,๐โ1 1 2 2 2 ๐๐,๐+1 โ 2๐๐,๐ + ๐๐,๐โ1
+ (๐ โ ๐) ๐โ๐
+ ๐ ๐โโ๐
= ๐๐๐,๐
โ
โ๐ก
2โ๐
2
โ๐ 2
2
๐๐
๐๐
1
1
(๐๐+1,๐ โ ๐๐,๐ ) + (๐ โ ๐)๐โ๐ก(๐๐,๐+1 โ ๐๐,๐โ1 ) + ๐ 2 ๐ 2 โ๐ก(๐๐,๐+1 โ 2๐๐,๐ + ๐๐,๐โ1 ) = ๐โ๐ก๐๐,๐
2
2
CHAPTER 20: BASIC NUMERICAL PROCEDURES
3
AMF271: FINANCIAL DERIVATIVES
First Semester, SY 2012-2013
๐๐+1,๐
Emmanuel Cabral
1
1
1
1
= โ๐๐,๐โ1 [ ๐ 2 ๐ 2 โ๐ก โ (๐ โ ๐)๐โ๐ก] + ๐๐,๐ [1 + ๐ 2 ๐ 2 โ๐ก + ๐โ๐ก] + ๐๐,๐+1 [โ (๐ โ ๐)๐โ๐ก โ ๐ 2 ๐ 2 โ๐ก]
2
2
2
2
๐๐+1,๐ = ๐๐ ๐๐,๐โ1 + ๐๐ ๐๐,๐ + ๐๐ ๐๐,๐+1
where
1
1
(๐ โ ๐)๐โ๐ก โ ๐ 2 ๐ 2 โ๐ก
2
2
๐๐ = 1 + ๐ 2 ๐ 2 โ๐ก + ๐โ๐ก
1
๐๐ = โ [(๐ โ ๐)๐โ๐ก + ๐ 2 ๐ 2 โ๐ก]
2
๐๐ =
At the boundary nodes,
๐๐,๐ = max(๐พ โ ๐โ๐, 0) ,
๐ = 0,1, โฆ , ๐
๐๐,0 = ๐พ,
๐ = 0,1, โฆ , ๐
๐๐,๐ = 0,
๐ = 0,1, โฆ , ๐
Remark: Values of ๐ at the inner nodes are unknown.
๐
๐
๐
โฎ
๐
๐
= 0:
= 1:
= 2:
๐๐โ1,0 = ๐๐,0 = ๐พ (BC)
๐1 ๐๐โ1,0 + ๐1 ๐๐โ1,1 + ๐1 ๐๐โ1,2 = ๐๐,1
๐2 ๐๐โ1,1 + ๐2 ๐๐โ1,2 + ๐2 ๐๐โ1,3 = ๐๐,2
= ๐ โ 1:
= ๐:
๐๐โ1 ๐๐โ1,๐โ2 + ๐๐โ1 ๐๐โ1,๐โ1 + ๐๐โ1 ๐๐โ1,๐ = ๐๐,๐โ1
๐๐โ1,๐ = ๐๐,๐ = ๐พ (BC)
โนWe have a system of ๐ + 1 equations with ๐ โ 1 unknown (values of ๐ at interior nodes)
So, to get the values of ๐๐โ1,๐ for ๐ = 1,2, โฆ , ๐ โ 1, we need to solve the system
๐๐โ1,0
๐๐,0
๐+1
โ๐1 ๐1 ๐1 0 โฆ
๐
๐๐,1
0
0
๐โ1,1
๐
๐๐,2
0 ๐2 ๐2 ๐2 โฆ
0
0
๐โ1,2
โฎ
โฎ
๐ โ 1 0 0 ๐3 ๐3 โฆ
=
0
0
๐๐โ1,๐โ2
๐๐,๐โ2
โฎ
โฎ
โฎ
โฎ โฑ
โฎ
โฎ
[ 0 0 0 0 โฆ ๐๐โ1 ๐๐โ1 ] ๐๐โ1,๐โ1
๐๐,๐โ1
{
[ ๐๐โ1,๐ ] [ ๐๐,๐ ]
Add the two boundary conditions to make an ๐ + 1 × ๐ + 1 matrix
๐ด
โ1
๐1
0
0
โฎ
0
[0
0
๐1
๐2
0
โฎ
0
0
0
๐1
๐2
๐3
โฎ
0
0
0
0
๐2
๐3
โฎ
0
0
โฆ
โฆ
โฆ
โฆ
โฑ
โฆ
โฆ
0
0
0
0
โฎ
0
0
0
0
โฎ
๐๐โ1
0
๐๐โ1
0
0
0
0
0
โฎ
๐๐โ1,0
๐๐โ1,1
๐๐โ1,2
โฎ
๐๐โ1,๐โ2
๐๐โ1 ๐๐โ1,๐โ1
1 ] [ ๐๐โ1,๐ ]
=
๐๐,0
๐๐,1
๐๐,2
โฎ
๐๐,๐โ2
๐๐,๐โ1
[ ๐๐,๐ ]
That is,
CHAPTER 20: BASIC NUMERICAL PROCEDURES
4
First Semester, SY 2012-2013
AMF271: FINANCIAL DERIVATIVES
๐ ๐โ1 =
and ๐ด๐ ๐โ1 = ๐ ๐ , where ๐ ๐ is known.
โน ๐ ๐โ1 = ๐ดโ1 ๐ ๐ assuming ๐ด is invertible
๐๐โ1,0
๐๐โ1,1
๐๐โ1,2
โฎ
, ๐๐ =
๐๐โ1,๐โ2
๐๐โ1,๐โ1
[ ๐๐โ1,๐ ]
Emmanuel Cabral
๐๐,0
๐๐,1
๐๐,2
โฎ
๐๐,๐โ2
๐๐,๐โ1
[ ๐๐,๐ ]
Proceeding backwards, we have
๐ ๐โ2 = ๐ดโ1 ๐ ๐โ1
โฎ
๐ 1 = ๐ดโ1 ๐ 2
Algorithm for European (Implicit Method)
1. Input values of ๐(๐ต, ๐ถ), ๐ด (given from parameter)
2. For ๐ = ๐ โ 1 to 1
๐ ๐ = ๐ดโ1 ๐ ๐
Algorithm for American (Implicit Method)
1. Input values of ๐(๐ต, ๐ถ), ๐ด (given from parameter)
2. For ๐ = 1 to ๐ โ 1
๐ ๐ = ๐ดโ1 ๐ ๐
For ๐ = 1 to ๐ โ 1
๐(๐) = max(๐(๐), ๐พ โ ๐โ๐)
Control Variate Technique
๐๐ด = ๐๐ดโ โ ๐๐ตโ + ๐๐ต
where ๐๐ดโ : Value of American option obtained from simulation (e.g., finite difference)
๐๐ตโ : Value of European option obtained from simulation (e.g., finite difference)
๐๐ต : Value of European option obtained analytically (Black-Scholes)
Example
๐๐ดโ = 4.07
๐๐ตโ = 3.91
๐๐ต = 4.08
โน ๐๐ด = (4.07 โ 3.91) โ 4.08
Convertible Bonds
Convertible Bond: Bondholder has the option to convert the bond into equity
Callable Bond
Example 26.1
Modify the problem by letting ๐ = 0 (no default risk)
1
๐ข = ๐ ๐โโ๐ก , ๐ =
๐ = ๐ ๐โ๐ก , โ๐ก =
๐=
๐โ๐
๐ขโ๐
๐ข
3
,๐=
12
9
12
,๐ = 1โ๐
Homework:
CHAPTER 20: BASIC NUMERICAL PROCEDURES
5
First Semester, SY 2012-2013
1.
2.
AMF271: FINANCIAL DERIVATIVES
Emmanuel Cabral
Construct a binomial tree to price the convertible bond
Price the same convertible bond using finite difference.
Non-Dividend Stock
where ๐ is the price of the derivative
๐๐
๐๐ 1 2 2 ๐ 2 ๐
+ ๐๐
+ ๐ ๐
= ๐๐
๐๐ก
๐๐ 2
๐๐ 2
Boundary Condition
๐(๐, ๐๐ ) = max(2๐๐ , 100)
Finite Difference Methods (Summary)
Implicit Finite Difference Method
Explicit Finite Difference Method
Comparison Between Implicit and Explicit Methods
Other Remarks
- d
The Explicit Method and its Relationship with the Trinomial Model
Change of Variable
For better computational efficiency, we can let Z = ln S so that the BS PDE becomes
Let ๐ = ln ๐
๐๐ ๐๐ ๐๐
=
๐๐ ๐๐ ๐๐
๐๐ 1
=
๐๐ ๐
๐๐
๐๐
1
๐2 ๐
BS: + ๐๐ + ๐ 2 ๐ 2 2 = ๐๐
๐๐ก
๐๐
2
๐๐
Implied Volatility
Let ๐๐ต๐ be the price (Black-Scholes) of a European call
๐๐ be the market price of the same European call
where ๐0 , ๐พ, ๐, ๐ are given
Implied volatility is the volatility implied from observed option prices.
Given ๐๐ , ๐0 , ๐พ, ๐, ๐, what is ๐๐ ? (Not the same as historical volatilitly)
In practice, traders use BS model to estimate ๐imp from ๐๐ .
Historical volatility is backward looking.
Implied volatility is forward looking, i.e., it reflects the marketโs opinion about the volatility of a particular stock (market
outlook)
CHAPTER 20: BASIC NUMERICAL PROCEDURES
6
First Semester, SY 2012-2013
AMF271: FINANCIAL DERIVATIVES
Emmanuel Cabral
In theory, ๐ should be independent of ๐พ and ๐.
In practice, ๐ changes with ๐พ and ๐.
๐ vs ๐พ: volatility smile
๐ vs ๐: volatility term structure
๐ vs ๐พ, ๐ โ volatility surface
Option prices are usually quoted in terms of volatility.
(Derivagem can be used to estimate implied volatility for a given ๐พ, ๐0 )
To get the volatility smile for many ๐พ values, we use a program, e.g., scilab
Numerical Method for Implied Volatility
Newtonโs Method of Root Finding
Suppose we want to solve the equation ๐(๐ฅ) = ๐, where ๐ is a constant. We want the root of this equation.
First, let ๐น(๐ฅ) = ๐(๐ฅ) โ ๐. We are solving ๐น(๐ฅ) = 0
Assuming that ๐น is differentiable at ๐ฅ0 , we get the tangent line to ๐น at ๐ฅ0 :
slope of tangent = ๐น โฒ (๐ฅ0 ) =
๐ฆโ๐น(๐ฅ0 )
๐ฅโ๐ฅ0
(๐ฅ, ๐ฆ) is an arbitrary point on the tangent line.
This tangent line crosses the ๐ฅ โ axis at
๐ฅ1 = ๐ฅ0 โ
๐น(๐ฅ0 )
๐น โฒ (๐ฅ0 )
So ๐ฅ1 becomes the new estimate of the root.
Repeat the process:
๐ฅ๐+1 = ๐ฅ๐ โ
๐น(๐ฅ๐ )
๐น โฒ (๐ฅ๐ )
Now, let ๐ = market price of a European call with given ๐0 , ๐พ, ๐, ๐.
Let ๐(๐) = ๐ where ๐ is now the BS formula
๐น(๐) = ๐(๐) โ ๐.
๐(๐) โ ๐
๐(๐) โ ๐
๐๐+1 = ๐๐ โ
= ๐๐ โ
โฒ
(๐)
๐น
๐ โฒ (๐)
Also,
๐(๐) = ๐0 โ(๐1 ) โ ๐พ๐ โ๐๐ โ(๐2 )
๐
๐2
๐
๐2
ln ( 0 ) + (๐ + ๐)
ln ( 0 ) + (๐ โ ๐)
๐พ
2
๐พ
2
๐1 =
, ๐2 =
๐โ๐
๐โ๐
CHAPTER 20: BASIC NUMERICAL PROCEDURES
7
First Semester, SY 2012-2013
๐ โฒ (๐) = ๐0
1
โ2๐
๐12
๐โ 2
AMF271: FINANCIAL DERIVATIVES
Emmanuel Cabral
๐๐1
1 โ๐22 ๐๐2
โ
โ๐พ
๐ 2 โ
โ
โ
๐๐
๐๐
โ2๐
?
?
Next exercise: Plot a volatility smile. (Currency option or equity option)
Implied Volatility
Let ๐๐ต๐ , ๐๐ต๐ be the European call and put prices respectively from Black-Scholes formula. Let ๐๐ and ๐๐ be the corresponding
call and put market prices.
In the absence of arbitrage opportunities, we have
๐๐ + ๐พ๐ โ๐๐ = ๐๐ + ๐0 ๐ โ๐๐
where ๐ = continuous dividend yield
Put-call parity can also be verified for the Black-Scholes model. That is
๐๐ต๐ + ๐พ๐ โ๐๐ = ๐๐ต๐ + ๐0 ๐ โ๐๐
โน ๐๐ต๐ โ ๐๐ = ๐๐ต๐ โ ๐๐
Discrepancy between BS and MKT prices should be the same for both call and put with the same strike and maturity.
Remark: ๐imp is the volatility, which when substituted into the BS model gives ๐๐ต๐ = ๐๐ .
๏ท If ๐ = ๐imp , we have ๐๐ต๐ โ ๐๐ = ๐๐ต๐ โ ๐๐ = 0. Note that ๐๐ต๐ can be obtained from ๐๐ต๐ via BS model using ๐ = ๐imp . So
๐๐ = ๐๐ต๐ with ๐ = ๐imp
๏ท ๐imp should be the same for both put and call with the same time to maturity ๐, and strike price ๐พ.
๏ท โ๐, ๐พ, the correct volatility to use with BS model to price the European call should be the same as that used to price
the European put.
Volatility Smile: ๐๐ข๐ฆ๐ฉ vs ๐ฒ
The smile shifts with ๐0 , the current asset price.
The smile is more stable if it is taken as the relationship with ๐พโ๐ , i.e., ๐imp vs ๐พโ๐
0
0
Volatility Term Structure: ๐๐ข๐ฆ๐ฉ vs ๐ป
Traders allow implied volatility to depend on the remaining time to maturity.
Homework
1. For a given maturity ๐, construct a volatility smile, i.e., ๐imp vs ๐พโ๐
0
2.
3.
4.
Do this for other maturities ๐2 , ๐3 , โฆ , ๐๐
Steps 1 and 2 will help create your volatility surface (similar to table in p.417)
Use your volatility surface to price a call or put with intermediate maturity and intermediate ๐พโ๐ value using 20
dimensional linear interpolation. (Create your own hypothetical example.)
Remarks
1. BS model is a sophisticated interpolation tool used by traders for ensuring that an option is priced consistently with
market prices of other actively traded options.
2. Replacing the BS model may change the volatility surface but actual prices quoted in the market would not change
appreciably.
The Implied Risk-Neutral Probability
(Implied Probability Distribution of an Underlying Asset Price)
BS Model assumes lognormal risk-neutral probability distribution of asset prices
๐๐๐ก
= ๐๐๐ก + ๐๐๐
๐๐ก
1 2
)๐+๐๐
๐๐ก = ๐0 ๐ (๐โ2๐
๐ก
CHAPTER 20: BASIC NUMERICAL PROCEDURES
8
First Semester, SY 2012-2013
AMF271: FINANCIAL DERIVATIVES
Emmanuel Cabral
1
ln(๐๐ ) ~๐ฉ (ln ๐0 + (๐ โ ๐ 2 ) ๐ , ๐ 2 ๐)
2
Actual market prices give a slightly different risk-neutral probability distribution.
Determining Implied Risk-Neutral Probability Distributions from Volatility Smile
The price of a European call on an asset with strike of ๐พ and maturity ๐ is given by
๐ = ๐ โ๐๐ ๐ผ[(๐
โ ๐ โ ๐พ)+ ]
โ
under risk neutral
prob distribution
= โซ (๐๐ โ ๐พ)๐(๐๐ )๐๐๐
๐พ
where ๐(๐๐ ) = risk-neutral pdf of ๐๐ . What is ๐?
โ
๐๐
= โ๐ โ๐๐ โซ ๐(๐๐ )๐๐๐
๐๐พ
๐พ
๐2๐
โ๐๐
= ๐ ๐(๐พ),
by First Fundamental Theorem of Calculus
๐๐พ 2
๐2๐
๐(๐พ) = ๐ ๐๐
๐๐พ 2
Let ๐ = ๐(โ, ๐พ)
๐2๐
=
๐๐พ 2
๐(โ, ๐พ + ๐ฟ) โ ๐(โ, ๐พ) ๐(โ, ๐พ) โ ๐(โ, ๐พ โ ๐ฟ)
โ
๐ฟ
๐ฟ
๐ฟ
๐
๐
๐
1
2
3
โ
โ ๐พ) + โ
๐(โ, ๐พ + ๐ฟ) โ 2 ๐(โ,
๐(โ, ๐พ โ ๐ฟ)
=
๐ฟ2
where ๐1 , ๐2 , ๐3 are three European call prices with strike ๐พ + ๐ฟ, ๐พ, ๐พ โ ๐ฟ respectively.
Then,
๐1 โ 2๐2 + ๐3
๐(๐พ) = ๐ ๐๐ [
]
๐ฟ2
is the pdf evaluated at ๐พ
Read Example 19A.1
HW: From one of the volatility smiles that you constructed, obtain a risk-neutral probability distribution for the asset
price.
Example 19A.1
๐(๐พ) = ๐ ๐๐
Let ๐๐ be in one of the intervals [๐พ โ ๐ฟ, ๐พ + ๐ฟ]
๐ฟ = 0.5
Assume that ๐ is constant between ๐พ = 6 and ๐พ = 7
Let ๐๐ be inside [6,7]
๐(๐๐ ) = ๐ ๐๐
๐2๐
๐๐พ 2
(๐1 โ 2๐2 + ๐3 )
0.52
Exercise 17.20
Spot call option ๐ =?
3
๐=
12
๐น0 = 12
CHAPTER 20: BASIC NUMERICAL PROCEDURES
9
First Semester, SY 2012-2013
AMF271: FINANCIAL DERIVATIVES
Emmanuel Cabral
๐พ = 13
๐ = 4%
๐ = 25%
Blackโs Model for futures call: ๐ = [๐น0 โ(๐1 ) โ ๐พโ(๐2 )]๐ โ๐๐
where ๐1 =
ln(
12
0.252 3
)+(4+
)( )
13
2
12
0.25โ
3
12
CHAPTER 20: BASIC NUMERICAL PROCEDURES
10
© Copyright 2025 Paperzz