Lifted First-Order Probabilistic Inference Rodrigo de Salvo Braz University of Illinois at Urbana-Champaign with Eyal Amir and Dan Roth 1 Motivation We want to be able to do inference with Probabilistic First-order Logic if epidemic(Disease) then sick(Person, Disease) [0.2, 0.05] if sick(Person, Disease) then hospital(Person) [0.3, 0.01] sick(bob, measles) or sick(bob, flu) 0.6 Expressiveness of logic Robustness of probabilistic models Goal: Probabilistic Inference at First-order level (scalability one of main advantages) Page 2 Current approaches - Propositionalization Exact inference: Knowledge-based construction (Breese, 1992) Probabilistic Logic Programming (Ng & Subrahmanian, 1992) Probabilistic Logic Programming (Ngo and Haddawy, 1995) Probabilistic Relational Models (Friendman et al., 1999) Relational Bayesian networks (Jaeger, 1997) Bayesian Logic Programs (Kersting & DeRaedt, 2001) Probabilistic Abduction (Poole, 1993) MEBN (Laskey, 2004) Markov Logic (Richardson & Domingos, 2004) Sampling: PRISM (Saito, 1995) BLOG (Milch et al, 2005) Page 3 Unexploited structure f(epidemic(Disease1), epidemic(Disease2)) epidemic(flu) … epidemic(D1) D1 D2 epidemic(measles) epidemic(rubella) propositionalized epidemic(D2) first-order as in first-order theorem proving Page 4 This Talk Representation Inference Inversion Elimination (IE) (Poole, 2003) Formalization of IE Identification of conditions for IE Counting Elimination Experiment & Conclusions Page 5 Representation epidemic(measles) … … sick(mary,measles) … sick(mary,flu) … … … hospital(mary) epidemic(flu) sick(bob,measles) … … … Page 6 hospital(bob) sick(bob,flu) Representation epidemic(measles) … … sick(mary,measles) … … sick(mary,flu) epidemic(flu) … … sick(bob,measles) … f(sick(mary,measles), epidemic(measles)) hospital(mary) … … Page 7 hospital(bob) sick(bob,flu) Representation epidemic(measles) … … sick(mary,measles) … sick(mary,flu) … … … hospital(mary) epidemic(flu) sick(bob,measles) … … … Page 8 hospital(bob) sick(bob,flu) Representation - Lots of Redundancy! epidemic(measles) … … sick(mary,measles) … sick(mary,flu) … … … hospital(mary) epidemic(flu) sick(bob,measles) … … … Page 9 hospital(bob) sick(bob,flu) Representing structure epidemic(measles) … epidemic(flu) … sick(mary,measles) … … sick(mary,flu) Poole (2003) named these parfactors, for “parameterized factors” … sick(bob,measles) epidemic(D) sick(P,D) Page 10 … sick(bob,flu) Parfactor epidemic(Disease) sick(Person,Disease) 8 Person, Disease f(sick(Person,Disease), epidemic(Disease)) Page 11 Parfactor epidemic(Disease) Person mary, Disease flu sick(Person,Disease) 8 Person, Disease f(sick(Person,Disease), epidemic(Disease)), Person mary, Disease flu Page 12 Representing structure epidemic(D) sick(P,D) hospital(P) More intutive More compact Represents structure explicitly Generalization of graphical models Atoms represent a set of random variables Page 13 Making use of structure in Inference Task: given a condition, what is the marginal probability of a set of random variables? P(sick(bob, measles) | sick(mary,measles)) = ? Three approaches plain propositionalization dynamic construction (“smart” propositionalization) lifted inference Page 14 Inference - Plain Propositionalization Instantiation of potential function for each instantiation Lots of redundant computation Lots of unnecessary random variables Page 15 Inference - Dynamic construction Instantiation of potential function for relevant parts P(hospital(mary) | sick(mary, measles)) = ? epidemic(measles) epidemic(flu) … epidemic(rubella) sick(mary,measles) sick(mary, flu) … sick(mary, rubella) hospital(mary) Page 16 Inference - Dynamic construction Instantiation of potential function for relevant parts P(hospital(mary) | sick(mary, measles)) = ? epidemic(measles) epidemic(flu) … epidemic(rubella) sick(mary,measles) sick(mary, flu) … sick(mary, rubella) Much redundancy still hospital(mary) Page 17 Inference - Dynamic construction Most common approach for exact First-order Probabilistic inference: Knowledge-based construction (Breese, 1992) Probabilistic Logic Programming (Ng & Subrahmanian, 1992) Probabilistic Logic Programming (Ngo and Haddawy, 1995) Probabilistic Relational Models (Friendman et al., 1999) Relational Bayesian networks (Jaeger, 1997) Bayesian Logic Programs (Kersting & DeRaedt, 2001) MEBN (Laskey, 2004) Markov Logic (Richardson & Domingos, 2004) Page 18 Inference - Lifted inference Inference on parameterized, or first-order, level; Performs certain inference steps once for a class of random variables; Poole (2003) describes a generalized Variable Elimination algorithm which we call Inversion Elimination. Page 19 Inference - Inversion Elimination (IE) P(hospital(mary) | sick(mary, measles)) = ? epidemic(D) sick(mary, D) hospital(mary) Page 20 Inference - Inversion Elimination (IE) P(hospital(mary) | sick(mary, measles)) = ? epidemic(D) sick(mary, D) hospital(mary) Page 21 = Unification Inference - Inversion Elimination (IE) P(hospital(mary) | sick(mary, measles)) = ? epidemic(measles) epidemic(D) D measles sick(mary,measles) sick(mary, D) hospital(mary) Page 22 D measles Inference - Inversion Elimination (IE) P(hospital(mary) | sick(mary, measles)) = ? epidemic(measles) = sick(mary,measles) epidemic(D) D measles sick(mary, D) hospital(mary) Page 23 D measles Inference - Inversion Elimination (IE) P(hospital(mary) | sick(mary, measles)) = ? epidemic(measles) epidemic(D) D measles sick(mary,measles) sick(mary, D) hospital(mary) Page 24 D measles Inference - Inversion Elimination (IE) P(hospital(mary) | sick(mary, measles)) = ? epidemic(D) D measles sick(mary,measles) sick(mary, D) hospital(mary) Page 25 D measles Inference - Inversion Elimination (IE) P(hospital(mary) | sick(mary, measles)) = ? epidemic(D) D measles sick(mary, D) hospital(mary) Page 26 D measles Inference - Inversion Elimination (IE) P(hospital(mary) | sick(mary, measles)) = ? D measles sick(mary, D) hospital(mary) Page 27 D measles Inference - Inversion Elimination (IE) P(hospital(mary) | sick(mary, measles)) = ? hospital(mary) Page 28 Inference - Inversion Elimination (IE) Does not depend on domain size. epidemic(measles) sick(mary,measles) … epidemic(flu) epidemic(D) sick(mary, flu) sick(mary, D) hospital(mary) hospital(mary) Page 29 First contribution - Formalization of IE Joint f q f(Afq) Example X f1(p(X)) X,Y f2(p(X),q(X,Y)) Marginalization by eliminating class q(X,Y): q(X,Y) X f1(p(X)) X,Y f2(p(X),q(X,Y)) = X f1(p(X)) q(X,Y) X,Y f2(p(X),q(X,Y)) Page 30 First contribution - Formalization of IE q(X,Y) X,Y f2(p(X),q(X,Y)) = q(x1,y1)...q(xn,ym) f2(p(x1),q(x1,y1))...f2(p(xn),q(xn,ym)) = (q(x1,y1) f2(p(x1),q(x1,y1)))... (q(xn,ym) f2(p(xn),q(xn,ym))) = X,Y q(X,Y) f2(p(X),q(X,Y)) = X,Y f3(p(X)) = X f4(p(X)) Page 31 First contribution - Formalization of IE q(X,Y) X,Y f2(p(X),q(X,Y)) = q(x1,y1)...q(xn,ym) f2(p(x1),q(x1,y1))...f2(p(xn),q(xn,ym)) = (q(x1,y1) f2(p(x1),q(x1,y1)))... (q(xn,ym) f2(p(xn),q(xn,ym))) = X,Y q(X,Y) f2(p(X),q(X,Y)) = X,Y f3(p(X)) = X f4(p(X)) Page 32 First contribution - Formalization of IE By formalizing the problem of Inversion Elimination, we determined conditions for its application: Eliminated atom must contain all logical variables in parfactors involved; Eliminated atom instances must not occur together in the same instances of parfactor. Page 33 Inversion Elimination - Limitations - I Eliminated atom must contain all logical variables in parfactors involved. epidemic(D) sick(P,D) Page 34 Inversion Elimination - Limitations - I Eliminated atom must contain all logical variables in parfactors involved. epidemic(D) epidemic(D) sick(P,D) Ok, contains both P and D Page 35 Inversion Elimination - Limitations - I Eliminated atom must contain all logical variables in parfactors involved. Not Ok, missing P epidemic(D) sick(P,D) sick(P,D) Page 36 Inversion Elimination - Limitations - I Eliminated atom must contain all logical variables in parfactors involved. No atom can be eliminated p(X,Y) q(Y,Z) Page 37 Inversion Elimination - Limitations - I Marginalization by eliminating class p(X): p(X) X,Y f2(p(X),q(X,Y)) = p(x1)...p(xn) Y f2(p(x1),q(x1,Y))... Y f2(p(xn),q(xn,Y)) = (p(x1) Y f2(p(x1),q(x1,Y)))... (p(xn) Y f2(p(xn),q(xn,Y))) = X p(X) Y f2(p(X),q(X,Y)) Page 38 Inversion Elimination - Limitations - II Requires eliminated RVs to occur in separate instances of parfactor epidemic(D) D measles sick(mary, D) Inversion Elimination Ok epidemic(flu) … epidemic(rubella) sick(mary, flu) … sick(mary, rubella) Page 39 Inversion Elimination - Limitations - II Requires eliminated RVs to occur in separate instances of parfactor epidemic(D1) Inversion Elimination Not Ok D1 D2 epidemic(D2) epidemic(flu) … epidemic(measles) epidemic(rubella) Page 40 Inversion Elimination - Limitations - II e(D) D1D2 f(e(D1),e(D2)) = e(d1)...e(dn) f(e(d1), e(d2)) ... f(e(dn-1),e(dn)) = e(d1) f(e(d1), e(d2))... e(dn) f(e(dn-1),e(dn)) Page 41 Second Contribution - Counting Elimination e(D) D1D2 f(e(D1),e(D2)) = e(D) f(0,0)#(0,0) in e(D),D1D2 f(0,1)#(0,1) in e(D),D1D2 f(1,0)#(1,0) in e(D),D1D2 f(1,1)#(1,1) in e(D),D1D2 = e(D) v f(v)#v in e(D),D1D2 |e(D)| =( i=0 |e(D)| i ) v f(v)#v in e(D),D1D2 (from i) Page 42 Second Contribution - Counting Elimination Does depend on domain size, but exponentially less so than brute force; More general than Inversion Elimination, but still has conditions of its own; inter-atom logical variables must be in a dominance ordering p(X,Y), q(Y,X), r (Y) OK, Y dominates X p(X), q(X,Y), r (Y) not OK, no dominance Page 43 A Simple Experiment Page 44 Conclusions Contributions: Formalization and Identification of conditions for Inverse Elimination (Poole); Counting Elimination; Much faster than propositionalization in certain cases; Basis for probabilistic theorem proving on the First-order level, as it is already the case with regular logic. Page 45 Future Directions Approximate inference Parameterized queries Function symbols “what is the most likely D such that sick(mary, D)?” sick(motherOf(mary), D) sequence(S, [g, c, t]) Equality MPE, MAP Summer project at Cyc Page 46 The End Page 47
© Copyright 2026 Paperzz