TMA4125 Matematikk 4N Spring 2017 Norwegian University of Science and Technology Institutt for matematiske fag 1 Solutions to exercise set 8 a) We begin by noting that all of the schemes are valid in the sense that a fixed point of each will be a root of the given polynomial. It remains to check for convergence by computing the derivatives. We first consider xn+1 = x3n − 1, i.e. xn+1 = g(xn ), where g(x) = x3 −1. Then g 0 (x) = 3x2 , and hence |g 0 (x)| > 1 on the whole of the interval [1, 1.5]. Hence this scheme will not converge. Next we look at −2 xn+1 = x−1 n + xn so g(x) = x−1 + x−2 , and g 0 (x) = −x−2 − 2x−3 . Then g 0 is increasing on [1, 1.5], and g(1.5) = −1.1, i.e. |g 0 (x)| > 1 on [1, 1.5], and this will not converge either. It remains to check 1 xn+1 = (xn + 1) 3 , 2 for which we find g 0 (x) = 31 (x + 1)− 3 . This is decreasing and greater than zero on [1, 1.5]. As g 0 (x) = 0.2099..., we have |g 0 (x)| ≤ 0.21 < 1 on [1, 1.5]. Moreover, since g(x) is increasing each application of g keeps us in the interval [1, 1.5] where |g 0 (x)| ≤ 0.21, hence we have convergence. b) We find the following sequence of values: x0 = 1, x1 = 1.2599, x2 = 1.3122, x3 = 1.3223, x4 = 1.3242. As the first three digits of x3 and x4 are equal, we conclude that x = 1.32 to 3 significant digits. 2 a) As f (x) = xm − a, we have f 0 (x) = mxm−1 . Then g(x) = x − b) Now ie √ 3 f (x) xm − a 1 a = x − = x(1 − ) + 0 m−1 f (x) mx m mxm−1 2 solves x3 − 2 = 0, so we use the above scheme with m = 3 and a = 2, 2 1 xn+1 = (xn + 2 ) 3 xn As an illustration, we start at x0 = 1, although other initial values are possible. We then find x1 = 1.3333, x2 = 1.2639, x3 = 1.2599, x4 = 1.2599, i.e x = 1.2599 to 5 significant figures. 1 c) For the estimate, we Taylor expand about the solution s = a m . Then 1 xn+1 = g(s − n ) = g(s) − g 0 (s)n + g 00 (s)2n + . . . 2 March 5, 2017 Page 1 of 3 Solutions to exercise set 8 Now g(s) = s and g 0 (s) = 0, hence we find 1 n+1 = s − xn+1 ≈ g 00 (s)2n 2 It remains to compute the second derivative. Then a(1 − m) −m 1 0 + x g (x) = 1 − m m 1 1 and hence g 00 (x) = a(m − 1)x−m−1 . Setting in s = a m gives s−m−1 = a−1 a− m , and hence 1 00 m−1 −1 g (s) = a m 2 2 i.e. we obtain an estimate n+1 ≈ − 3 m−1 −1 2 a m n 2 a) Here f (x) = x2 − 4x + 1 = 0, and for the secant method we have xn+1 = xn − f (xn ) xn − xn−1 f (xn ) − f (xn−1 ) Now f (xn ) − f (xn−1 ) = x2n − x2n−1 − 4xn + 4xn−1 , so we can use the suggested factorization to find xn − xn−1 1 = f (xn ) − f (xn−1 ) (xn + xn−1 − 4) It follows that xn+1 = xn xn−1 − 1 xn (xn + xn−1 − 4) − x2n + 4xn − 1 = xn + xn−1 − 4 xn + xn−1 − 4 b) Implementing the above three times with x0 = 5, x1 = 4 gives x2 = 3.8, x3 = 3.7368, x4 = 3.7321, x5 = 3.7320 (performed in exact arithmetic, but rounded to 5 significant digits). 4 a) We begin by computing the Jacobian of the mapping ! ∂ ∂ (x − cos y) (x − cos y) 1 sin y ∂x ∂y DF = ∂ = ∂ sin x 1 ∂x (x − cos y) ∂y (y − cos x) We then have DF −1 1 = 1 − sin x sin y 1 − sin y − sin x 1 Newtons method is then 1 xn+1 xn 1 − sin yn xn − cos yn = − yn+1 yn 1 yn − cos xn 1 − sin xn sin yn − sin xn March 5, 2017 Page 2 of 3 Solutions to exercise set 8 and hence 1 xn (1 − sin xn sin yn ) − (xn − cos yn ) + sin yn (yn − cos xn ) xn+1 = yn+1 1 − sin xn sin yn yn (1 − sin xn sin yn ) + sin xn (xn − cos yn ) − (yn − cos xn ) which on rearranging gives 1 xn+1 cos yn + (yn − xn sin xn − cos xn ) sin yn = yn+1 1 − sin xn sin yn cos xn + (xn − yn sin yn − cos yn ) sin xn b) Performing three iterations from x0 = 0, y0 = 1 using the above formula gives x1 = 0.5403, y1 = 1, then x2 = 0.7516, y2 = 0.7488, and at last x3 = 0.7391, y3 = 0.7391 (working to 4 significant figures). March 5, 2017 Page 3 of 3
© Copyright 2026 Paperzz