Game Playing Mini-Max search Alpha-Beta pruning General concerns on games Two suspects are arrested by the police. The police have insufficient evidence for a conviction, and, having separated the prisoners, visit each of them to offer the same deal. If one testifies for the prosecution against the other (defects) and the other remains silent (cooperates), the defector goes free and the silent accomplice receives the full 10-year sentence. If both remain silent, both prisoners are sentenced to only six months in jail for a minor charge. If each betrays the other, each receives a five-year sentence. Each prisoner must choose to betray the other or to remain silent. Each one is assured that the other would not know about the betrayal before the end of the investigation. How should the prisoners act? 2 5个海盗抢到了100颗宝石,每一颗都一样的大小和价 值连城,他们决定这分: 1. 抽签决定自己的号码(1,2,3,4,5) 2. 首先,由1号提出分配方案,然后大家5人进行表决, 当且仅当超过半数的人同意时,按照他的提案进行分配 ,否则将被扔入大海喂鲨鱼。 3. 如果1号死后,再由2号提出分配方案,然后大家4人 进行表决,当且仅当超过半数的人同意时,按照他的提 案进行分配,否则将被扔入大海喂鲨鱼。 4. 以次类推...... 条件: 1.每个海盗都是极其聪明的人 2.每个海盗都是非 常残忍的人 3.每个海盗都能明确的判断得失然后作出明 智的选择问题: 第一个海盗提出怎样的分配方案才能 3 标准答案是:1号强盗分给3号1枚金币,4号或5号强盗 2枚,独得97枚。分配方案可写成(97,0,1,2,0 )或(97,0,1,0,2)。 4 推 理过程是这样的:从后向前推, 如果1-3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反 对票让4号喂鲨鱼,以独吞全部金币。所以,4号惟有支持3号 才能保命。 3号知道这一点,就会提(100,0,0)的分配方案,对4号、 5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获 但还是会投赞成票, 再加上自己一票他的方案即可通过。 不过,2号推知到3号的方案,就会提出(98,0,1,1)的方 案,即放弃3号,而给予4号和5号各一枚金币。由于该方 案对 于4号和5号来说比在3号分配时更为有利,他们将支持他而不 希望他出局而由3号来分配。这样,2号将拿走98枚金币。 不过, 2号的方案会被1号所洞悉,1号并将提出(97 ,0,1, 2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号 一枚金币,同时给4号(或5号)2枚金币。由于1号的这一方案 对于3号和4号 (或5号)来说,相比2号分配时更优,他们将 投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97 枚金币可轻松落入囊中。这无疑是1号能够获取 最大收益的方 案了! 5 Why study board games ? One of the oldest subfields of AI (Shannon and Turing, 1950) Abstract and pure form of competition that seems to require intelligence Easy to represent the states and actions Very little world knowledge required ! Game playing is a special case of a search problem, with some new requirements. 6 Types of games Deterministic Chance Perfect information Chess, checkers, Backgammon, go, othello monopoly Imperfect information Sea battle Bridge, poker, scrabble, nuclear war 7 Why new techniques for games? “Contingency” problem: We don’t know the opponents move ! The size of the search space: Chess : ~15 moves possible per state, 80 ply 1580 nodes in tree Go : ~200 moves per state, 300 ply 200300 nodes in tree Game playing algorithms: Search tree only up to some depth bound Use an evaluation function at the depth bound Propagate the evaluation upwards in the tree 8 MINI MAX Restrictions: 2 players: MAX (computer) and MIN (opponent) deterministic, perfect information Select a depth-bound (say: 2) and evaluation function MAX MIN MAX Select this move 3 2 2 3 1 5 3 1 4 4 3 - Construct the tree up till the depth-bound - Compute the evaluation function for the leaves - Propagate the evaluation function upwards: - taking minima in MIN - taking maxima in MAX 9 The MINI-MAX algorithm: Initialise depthbound; Minimax (board, depth) = IF depth = depthbound THEN return static_evaluation(board); ELSE IF maximizing_level(depth) THEN FOR EACH child child of board compute Minimax(child, depth+1); return maximum over all children; ELSE IF minimizing_level(depth) THEN FOR EACH child child of board compute Minimax(child, depth+1); return minimum over all children; Call: Minimax(current_board, 0) 10 Alpha-Beta Cut-off Generally applied optimization on Mini-max. Instead of: first creating the entire tree (up to depth-level) then doing all propagation Interleave the generation of the tree and the propagation of values. Point: some of the obtained values in the tree will provide information that other (non-generated) parts are redundant and do not need to be generated. 11 Alpha-Beta idea: Principles: generate the tree depth-first, left-to-right propagate final values of nodes as initial estimates for their parent node. MAX MIN MAX 2 2 =2 1 - The MIN-value (1) is already smaller than the MAX-value of the parent (2) - The MIN-value can only decrease further, - The MAX-value is only allowed to increase, - No point in computing further below this node 2 5 1 12 Terminology: - The (temporary) values at MAX-nodes are ALPHA-values - The (temporary) values at MIN-nodes are BETA-values MAX MIN MAX Alpha-value 2 2 2 =2 1 5 1 Beta-value 13 The Alpha-Beta principles (1): - If an ALPHA-value is larger or equal than the Beta-value of a descendant node: stop generation of the children of the descendant MAX MIN MAX Alpha-value 2 2 2 =2 1 5 1 Beta-value 14 The Alpha-Beta principles (2): - If an Beta-value is smaller or equal than the Alpha-value of a descendant node: stop generation of the children of the descendant MAX MIN MAX 2 2 2 =2 5 1 3 Beta-value Alpha-value 15 Mini-Max with at work: 4 16 8 6 5 23 = 4 15 8 2 =8 5 9 8 = 5 30 2 10 1 18 4 12 3 20 = 4 14 = 5 22 8 7 3 9 1 6 2 4 1 1 3 4 7 5 31 = 5 39 9 11 13 MAX 3 38 1 33 2 35 3 25 9 27 6 29 = 3 37 1 3 5 3 9 2 6 5 2 17 19 21 24 26 MIN 28 MAX 1 2 3 9 7 2 8 6 4 32 34 36 11 static evaluations saved !! 16 “DEEP” cut-offs - For game trees with at least 4 Min/Max layers: the Alpha - Beta rules apply also to deeper levels. 4 4 4 4 4 2 2 17 The Gain: Best case: - If at every layer: the best node is the left-most one MAX MIN MAX Only THICK is explored 18 Example of a perfectly ordered tree MAX 21 21 21 24 12 27 21 20 19 24 23 22 27 26 25 12 15 3 18 12 11 10 15 14 13 18 17 16 3 6 MIN 9 MAX 3 2 1 6 5 4 9 8 7 19 How much gain ? - Alpha / Beta : best case : # (static evaluations saved) = 2 bd/2 - 1 (if d is even) b(d+1)/2 + b(d-1)/2 - 1 (if d is odd) - The proof is by induction. - In the running example: d=3, b=3 : 11 ! 20 Best case gain pictured: # Static evaluations b = 10 No pruning 100000 Alpha-Beta Best case 10000 1000 100 10 1 2 3 4 5 6 7 Depth - Note: algorithmic scale. - Conclusion: still exponential growth !! - Worst case?? For some trees alpha-beta does nothing, For some trees: impossible to reorder to avoid cut-offs 21 The horinzon effect. Queen lost Pawn lost horizon = depth bound of mini-max Queen lost Because of the depth-bound we prefer to delay disasters, although we don’t prevent them !! solution: heuristic continuations 22 Heuristic Continuation In situations that are identifies as strategically crucial e.g: king in danger, imminent piece loss, pawn to become as queens, ... extend the search beyond the depth-bound ! depth-bound 23 Games of chance Ex.: Backgammon: Form of the game tree: 24 State of the art Drawn from an article by Mathew Ginsberg, Scientific American, Winter 1998, Special Issue on Exploring Intelligence 25 State of the art (2) 26 State of the art (3) 27
© Copyright 2026 Paperzz