Tighter Cut-Based
Bounds for k-pairs
Communication Problems
Nick Harvey
Robert Kleinberg
Overview
Definitions
Sparsity
and Meagerness Bounds
Show these bounds very loose
Define Informational Meagerness
Based
on Informational Dominance
Show that it can be slightly loose
k-pairs Communication Problem
S(1)
M1
M2
S(2)
M1⊕M2
T(2)
T(1)
Concurrent Rate
Source i desires communication rate di.
Rate r is achievable if rate vector
[ rd1, rd2, …, rdk ] is achievable
Rate region interval of R+
Def: “Network coding rate” (or NCR)
:= sup { r : r is achievable }
k-pairs Communication Problem
S(1)
M1
M2
M1⊕M2
T(2)
S(2)
d1 = d2 = 1
ce = 1 eE
Rate 1 achievable
T(1)
Upper bounds on rate
[Classical]: Sparsity bound for multicommodity flows
[CT91]: General bound for multi-commodity information
networks
[B02]: Application of CT91 to directed network coding
instances; equivalent to sparsity.
[KS03]: Bound for undirected networks with arbitrary
two-way channels
[HKL04]: Meagerness
[SYC03], [HKL05]: LP bound
[KS05]: Bound based on iterative d-separation
Vertex-Sparsity
Def: For U V,
VS (U) :=
Capacity of edges crossing between U and U
Demand of commodities separated by U
VS (G) := minUV
VS (U)
Claim: NCR VS (G)
Edge-Sparsity
Def: For A E,
ES (A) :=
Capacity of edges in A
Demand of commodities separated in G\A
ES (G) = minAE
ES (A)
Claim: Max-Flow ES (G)
But: Sometimes NCR > ES (G)
NCR > Edge-Sparsity
S(1)
S(2)
e
T(2)
Cut {e} separates S(1) and S(2)
ES ({e}) = 1/2
But rate 1 achievable!
T(1)
Meagerness
Def: For A E and P [k],
A isolates P if for all i,j P,
S(i) and T(j) disconnected in G\A.
M (A) := minP isolated by A
M (G) := minAE
Capacity of edges in A
Demand of commodities in P
M (A)
Claim: NCR M (G)
Meagerness & Vtx-Sparsity are weak
S(n)
fn-1
gn
S(n-1)
f3
gn-1
S(3)
f2
g3
S(2)
f1
g2
S(1)
g1
Gn :=
T(n)
hn-1
T(n-1)
h3
T(3)
h2
Thm: M (Gn) = VS (Gn) = (1),
but NCR 1/n.
T(2)
h1
T(1)
A Proof Tool
Def: Let A,B E. B is downstream of A
if B disconnected from sources in G\A.
Notation: A B.
Claim: If A B then H(A) H(A,B).
Pf: Because S A B form Markov chain.
Lemma: NCR 1/n
S(n)
fn-1
gn
S(n-1)
gn-1
f3
S(3) f2
g3
S(2) f1
g2
S(1)
g1
Gn :=
T(n)
hn-1
T(n-1)
Proof:
{gn} {gn,T(1),h1}
h3 T(3) h2
T(2) h1
T(1)
Lemma: NCR 1/n
S(n)
fn-1
gn
S(n-1)
gn-1
f3
S(3) f2
g3
S(2) f1
g2
S(1)
g1
Gn :=
T(n)
hn-1
T(n-1)
h3 T(3) h2
T(2) h1
Proof:
{gn} {gn,T(1),h1} {S(1),f1,g1,h1}
T(1)
Lemma: NCR 1/n
S(n)
fn-1
gn
S(n-1)
gn-1
f3
S(3) f2
g3
S(2) f1
g2
S(1)
g1
Gn :=
T(n)
hn-1
T(n-1)
h3 T(3) h2
T(2) h1
Proof:
{gn} {gn,T(1),h1} {S(1),f1,g1,h1}
{S(1),f1,T(2),h2}
T(1)
Lemma: NCR 1/n
S(n)
fn-1
gn
S(n-1)
gn-1
f3
S(3) f2
g3
S(2) f1
g2
S(1)
g1
Gn :=
T(n)
hn-1
T(n-1)
h3 T(3) h2
T(2) h1
Proof:
{gn} {gn,T(1),h1} {S(1),f1,g1,h1}
{S(1),f1,T(2),h2} {S(1),S(2),f2,g2,h2}
T(1)
Lemma: NCR 1/n
S(n)
fn-1
gn
S(n-1)
gn-1
f3
S(3) f2
g3
S(2) f1
g2
S(1)
g1
Gn :=
T(n)
hn-1
T(n-1)
h3 T(3) h2
T(2) h1
Proof:
{gn} {gn,T(1),h1} {S(1),f1,g1,h1}
{S(1),f1,T(2),h2} {S(1),S(2),f2,g2,h2}
{S(1),S(2),f2,T(3),h3}
T(1)
Lemma: NCR 1/n
S(n)
fn-1
gn
S(n-1)
gn-1
f3
S(3) f2
g3
S(2) f1
g2
S(1)
g1
Gn :=
T(n)
hn-1
T(n-1)
h3 T(3) h2
T(2) h1
Proof:
{gn} … {S(1),S(2),…,S(n)}
Thus 1 H(gn) H(S(1),…,S(n)) = n∙r
So 1/n r
T(1)
Towards a stronger bound
Our focus: cut-based bounds
Given A
E, we want to infer that
H(A) H(A,P) where P{S(1),…,S(k)}
Meagerness uses Markovicity:
(sources in P) A (sinks in P)
Markovicity sometimes not enough…
Informational Dominance
Def: A dominates B if information in A
determines information in B
in every network coding solution.
Denoted A i B.
Trivially implies H(A) H(A,B)
How to determine if A dominates B?
[HKL05]
give combinatorial characterization
and efficient algorithm to test if A dominates B.
Informational Meagerness
Def: For A E and P {S(1),…,S(k)},
A informationally isolates P if
AP i P.
Capacity of edges in A
iM (A) = minP
Demand of commodities in P
for P informationally isolated by A
iM (G) = minA E
iM (A)
Claim: NCR iM (G).
iMeagerness Example
s1
s2
t1
t2
“Obviously” NCR = 1.
But no two edges disconnect t1 and t2 from both
sources!
iMeagerness Example
s1
s2
t1
Cut A
t2
After removing A, still a path from s2 to t1!
Informational Dominance Example
s1
Cut A
s2
t1
t2
Our characterization shows A i {t1,t2}
H(A) H(t1,t2) and iM (G) = 1
A bad example: Hn
Thm: iMeagerness gap of Hn is (log |V|)
s(00)
H2
s(0)
q(00)
r(00)
t(00)
t(0)
s(ε)
s(01)
s(10)
q(01)
r(01)
q(10)
r(10)
t(01)
t(10)
t(ε)
s(1)
s(11)
q(11)
r(11)
t(1)
t(11)
Capacity 2-n
s(00)
s(0)
s(ε)
s(01)
s(10)
s(1)
s(11)
Tn = Binary tree of depth n
Source S(i) iTn
s(00)
s(0)
s(ε)
s(01)
s(10)
s(1)
s(11)
Tn = Binary tree of depth n
Source S(i) iTn
Sink T(i) iTn
t(00)
t(0)
t(01)
t(10)
t(ε)
t(1)
t(11)
s(00)
s(0)
s(ε)
s(01)
s(10)
s(1)
s(11)
Nodes q(i) and r(i) for every leaf i of Tn
q(00)
r(00)
t(00)
t(0)
q(01)
r(01)
q(10)
r(10)
t(01)
t(10)
t(ε)
q(11)
r(11)
t(1)
t(11)
s(00)
s(0)
q(00)
r(00)
s(ε)
s(01)
s(10)
q(01)
r(01)
q(10)
r(10)
s(1)
s(11)
q(11)
r(11)
Complete bip. graph between sources and q’s
t(00)
t(0)
t(01)
t(10)
t(ε)
t(1)
t(11)
(r(a),t(b)) if b ancestor of a in Tn
s(00)
s(0)
q(00)
r(00)
t(00)
t(0)
s(ε)
s(01)
s(10)
q(01)
r(01)
q(10)
r(10)
t(01)
t(10)
t(ε)
s(1)
s(11)
q(11)
r(11)
t(1)
t(11)
(s(a),t(b)) if a and b cousins in Tn
s(00)
s(0)
q(00)
r(00)
t(00)
t(0)
s(ε)
s(01)
s(10)
q(01)
r(01)
q(10)
r(10)
t(01)
t(10)
t(ε)
s(1)
s(11)
q(11)
r(11)
t(1)
t(11)
All edges have capacity except (q(i),r(i))
s(00)
s(0)
q(00)
r(00)
t(00)
t(0)
s(ε)
s(01)
s(10)
q(01)
r(01)
q(10)
r(10)
t(01)
t(10)
t(ε)
s(1)
s(11)
q(11)
r(11)
t(1)
t(11)
Capacity 2-n
Demand of source at depth i is 2-i
s(00)
s(0)
q(00)
r(00)
t(00)
t(0)
s(ε)
s(01)
s(10)
q(01)
r(01)
q(10)
r(10)
t(01)
t(10)
t(ε)
s(1)
s(11)
q(11)
r(11)
t(1)
t(11)
Capacity 2-n
Properties of Hn
Lemma: iM (Hn) = (1)
Lemma: NCR < 1/n
Corollary: iMeagerness gap is n=(log |V|)
Properties of Hn
Lemma: iM (Hn) = (1)
Lemma: NCR < 1/n
Corollary: iMeagerness gap is n=O(log |V|)
We will prove this
Proof Ingredients
Entropy moneybags
i.e.,
sets of RVs
Entropy investments
Buying
sources and edges, putting into moneybag
Loans may be necessary
Profit
Via
Downstreamness or Info. Dominance
Earn new sources or edges for moneybag
Corporate mergers
Via
Submodularity
New Investment Opportunities and Debt Consolidation
Debt repayment
Submodularity of Entropy
Claim: Let A and B be sets of RVs.
Then H(A)+H(B) H(AB)+H(AB)
Pf: Equivalent to I( X; Y | Z ) 0.
Lemma: NCR < 1/n
Proof:
Two entropy moneybags:
F(a)
= { S(b) : b not an ancestor of a }
E(a) = F(a) { (q(b),r(b)) : b is descendant of a }
Entropy Investment
a
s(00)
q(00)
r(00)
s(0)
s(ε)
s(01)
s(10)
q(01)
r(01)
q(10)
r(10)
Let a be a leaf of Tn
Take a loan and buy E(a).
s(1)
s(11)
q(11)
r(11)
Earning Profit
a
s(00)
q(00)
r(00)
t(00)
s(0)
s(ε)
s(01)
s(10)
q(01)
r(01)
q(10)
r(10)
s(1)
s(11)
q(11)
r(11)
Claim: E(a) T(a)
Pf: Cousin-edges not from ancestors.
Vertex r(00) blocked by E(a).
Earning Profit
a
s(00)
q(00)
r(00)
t(00)
s(0)
s(ε)
s(01)
s(10)
q(01)
r(01)
q(10)
r(10)
s(1)
s(11)
q(11)
r(11)
Claim: E(a) T(a)
Result:
E(a) gives free upgrade to E(a){S(a)}.
Profit = S(a).
aL
s(00)
s(0)
s(ε)
s(01)
s(10)
q(01)
r(01)
q(10)
r(10)
s(1)
s(11)
E(aL){S(aL)}
q(00)
r(00)
aR
s(00)
s(0)
s(ε)
s(01)
s(10)
q(01)
r(01)
q(10)
r(10)
q(11)
r(11)
s(1)
s(11)
E(aR){S(aR)}
q(00)
r(00)
q(11)
r(11)
Applying submodularity
s(00)
(E(aL){S(aL)})
(E(aR){S(aR)})
s(0)
q(00)
r(00)
s(00)
(E(aL){S(aL)})
(E(aR){S(aR)})
q(00)
r(00)
s(0)
s(ε)
s(01)
s(10)
q(01)
r(01)
q(10)
r(10)
s(ε)
s(01)
s(10)
q(01)
r(01)
q(10)
r(10)
s(1)
s(11)
q(11)
r(11)
s(1)
s(11)
q(11)
r(11)
New Investment
a
(E(aL){S(aL)})
(E(aR){S(aR)})
s(00)
q(00)
r(00)
s(0)
s(ε)
s(01)
s(10)
q(01)
r(01)
q(10)
r(10)
s(1)
s(11)
q(11)
r(11)
Union term has more edges
Can use downstreamness
or informational dominance again!
(E(aL){S(aL)}) (E(aR){S(aR)}) = E(a)
Debt Consolidation
Intersection term has only sources
Cannot earn new profit.
Used for later “debt repayment”
(E(aL){S(aL)}) (E(aR){S(aR)}) = F(a)
a
s(00)
(E(aL){S(aL)})
(E(aR){S(aR)})
q(00)
r(00)
s(0)
s(ε)
s(01)
s(10)
q(01)
r(01)
q(10)
r(10)
s(1)
s(11)
q(11)
r(11)
What have we shown?
Let aL,aR be sibling leaves; a is their parent.
H(E(aL)) + H(E(aR)) H(E(a)) + H(F(a))
Iterate and sum over all nodes in tree
H ( E (l )) H ( E (r )) H ( F (v))
leaf l
nonleaf v
where r is the root.
Note: E(v) = F(v) {(q(v),r(v))} when v is a leaf
H ( F (l )) H (( q (l ), r (l )))
leaf l
leaf l
H ( E (r )) H ( F (v))
nonleaf v
Debt Repayment
H ( F (l )) H (( q (l ), r (l )))
leaf l
leaf l
H ( E (r )) H ( F (v))
nonleaf v
( F (v))
l H ( F (l )) nonleaf
H
Claim: leaf
v
Pf: Simple counting argument.
H ((q(l ), r (l ))) H ( E (r ))
leaf l
Finishing up
H ((q(l ), r (l )))
H ( E (r ))
leaf l
=
c( q (l ),r (l ))
H ( S (i))
leaf l
i
=
=
1
2
depth ( v )
n
v
(where α = rate of solution)
Rate < 1/n
© Copyright 2026 Paperzz