Kinematics - a motivating example Basilio Bona DAUIN – Politecnico di Torino Semester 1, 2014-15 B. Bona (DAUIN) Kinematics Semester 1, 2014-15 1 / 11 Motivating example Figure: A sliding cart carrying an inverse pendulum. Consider the mass as a point mass. What is best the approach to model the system dynamics? One has three choices: Newton-Euler approach, Lagrange approach, Bond-graph approach B. Bona (DAUIN) Kinematics Semester 1, 2014-15 2 / 11 Motivating example Newton-Euler: vector equations based on the dynamic equilibrium of forces and moments. Lagrange: scalar equations based on state functions related to kinetic and potential energies. Bond-graph: an approach based on the power flow between interacting parts. B. Bona (DAUIN) Kinematics Semester 1, 2014-15 3 / 11 Motivating example Lagrangian approach for mechanical systems 1 2 3 4 5 6 7 8 9 count the rigid bodies N. associate to each one a reference frame and add an (pseudo-)inertial one; total (N + 1) RF. find a complete and independent set of n ≤ 6N generalized coordinates that best describe the system motion. compute the total kinetic (co-)energy and the potential energy. compute the dissipative effects. compute the external acting forces/torques. compute the Lagrange function. derive the n Lagrange equations, one for each coordinate. if required transform them into state equations. B. Bona (DAUIN) Kinematics Semester 1, 2014-15 4 / 11 Motivating example Our system includes two bodies, three reference frames, two coordinates (q1 , q2 ) Figure: RFs and qi coordinates. B. Bona (DAUIN) Kinematics Semester 1, 2014-15 5 / 11 Motivating example Some questions arise How you define the independent complete set of coordinates? How you define and include the constraints? What is the effect of the constraints on the coordinates? Each rigid body is defined by 6 coordinates (called d.o.f. or dof); 3 for position x, 3 for orientation α, together called the pose p of the body. Each constraint reduces the number of coordinates. B. Bona (DAUIN) Kinematics Semester 1, 2014-15 6 / 11 Motivating example A rover moving in a plane has only 3 dof; indeed the third positional coordinate is z = 0 and the two rotation angles around i and j are zero. ⎡% ⎡ ⎤ &T ⎤ ! " x x y 0 x ⎣ ⎦ ⎣ ⎦ y p= = % &T ⇒ α 0 0 θ θ B. Bona (DAUIN) Kinematics Semester 1, 2014-15 7 / 11 Motivating example Inverted pendulum (point mass M, gravity vector g) ⎡ ⎤ q1 + L cos q2 x = ⎣ L + L sin q2 ⎦ 0 ⎡ ⎤ q̇1 − L sin q2 q̇2 ẋ = v = ⎣ L cos q2 q̇2 ⎦ 0 ⎡ ⎤ 0 α=⎣0⎦ q2 ⎡ ⎤ 0 ⎣ α̇ = ω = 0 ⎦ q̇2 ∥v∥2 = (q̇1 − L sin q2 q̇2 )2 + (L cos q2 q̇2 )2 = q̇12 + L2 q̇22 − 2L sin q2 q̇1 q̇2 Kinetic co-energy 1 1 C ∗ = M ∥v∥2 = M(q̇12 + L2 q̇22 − 2L sin q2 q̇1 q̇2 ) 2 2 Potential energy B. Bona (DAUIN) P = −MgT x = MGL(1 + sin q2 ) Kinematics Semester 1, 2014-15 8 / 11 Motivating example B. Bona (DAUIN) Kinematics Semester 1, 2014-15 9 / 11 Motivating example Lagrangian L = C∗ − P Equation 1 d dt ) ∂L ∂ q̇1 * − ∂L =0 ∂q1 d dt ) ∂L ∂ q̇2 * − ∂L =0 ∂q2 Equation 2 B. Bona (DAUIN) Kinematics Semester 1, 2014-15 10 / 11 Motivating example Equation 1 M d (q̇1 − L sin q2 q̇2 ) = 0 dt M q̈1 − ML sin q2 q̈2 − ML cos q2 q̇22 = 0 Equation 2 M d 2 (L q̇2 − L sin q2 q̇1 ) + ML cos q2 q̇1 q̇2 + MGL cos q2 = 0 dt ML2 q̈2 − ML sin q2 q̈1 − ML cos q2 q̇1 q̇2 + ML cos q2 q̇1 q̇2 + MGL cos q2 = 0 ML2 q̈2 − ML sin q2 q̈1 + MGL cos q2 = 0 B. Bona (DAUIN) Kinematics Semester 1, 2014-15 11 / 11
© Copyright 2026 Paperzz