Unit 5 Proof Practice – Key (Textbook Chapter 6) 1) Given: ∠A ≅ ∠B Prove: ∆ACE ~ ∆BCD 2) Statements Reasons 1) ∠A ≅ ∠B 1) Given 2) ∠ACE ≅ ∠BCD 2) Reflexive 3) ∆ACE ~ ∆BCD 3) AA Similarity Given: ∠S ≅ ∠V Prove: ∆STX ~ ∆VTU 3) Statements Reasons 1) ∠S ≅ ∠V 1) Given 2) ∠STX ≅ ∠VTU 2) Vertical Angles are congruent 3) ∆STX ~ ∆VTU 3) AA Similarity ̅̅̅̅||𝐷𝐶 ̅̅̅̅ Given: 𝐴𝐵 Prove: ∆ABE ~ ∆DCE Statements Reasons ̅̅̅̅||𝐷𝐶 ̅̅̅̅ 1) 𝐴𝐵 1) Given 2) ∠BAE ≅ ∠CDE 2) Corresponding Angles Congruence Postulate ∠ABE ≅ ∠DCE 3) ∆ABE ~ ∆DCE 3) AA Similarity ** Can also use vertical angles ** 4) ̅̅̅̅̅||𝑂𝑃 ̅̅̅̅ Given: 𝑀𝑄 Prove: ∆MNQ ~ ∆PNO Statements Reasons ̅̅̅̅ 1) ̅̅̅̅̅ 𝑀𝑄 ||𝑂𝑃 1) Given 2) ∠M ≅ ∠P 2) Alternate Interior Angles Congruence Theorem 3) ∠MNQ ≅ ∠PNO 3) Vertical Angles are Congruent 4) ∆MNQ ~ ∆PNO 3) AA Similarity ** Can also solve using 2 alternate interior angles ** 5) Given: ∆ABC is a right triangle, ̅̅̅̅ 𝐵𝐷 ⊥ ̅̅̅̅ 𝐴𝐶 Prove: ∆ABC ~ ∆BDC Statements Reasons 1) ∆ABC is a right triangle 1) Given 2) ∠ABC is a right angle 2) Definition of right triangle ̅̅̅̅ ̅̅̅̅ ⊥ 𝐴𝐶 3) 𝐵𝐷 3) Given 4) ∠BDC is a right angle 4) Definition of perpendicular 5) ∠ABC ≅ ∠BDC 5) All right angles are congruent 6) ∠C ≅ ∠C 6) Reflexive Property 7) ∆ABC ~ ∆ADB 7) AA Similarity 6) ̅̅̅̅ Given: ̅̅̅ 𝐼𝐸 ||𝑉𝑂 𝐼𝐷 𝐸𝐷 Prove: 𝐷𝑉 = 𝐸𝑂 Statements Reasons ̅̅̅̅ ̅̅̅ ||𝑉𝑂 1) 𝐼𝐸 1) Given 2) ∠DIE ≅ ∠DVO, ∠DEI ≅ ∠DOV 2) Corresponding Angles Congruence Postulate 3) ∆DIE ~ ∆DVO 3) AA Similarity 𝐼𝐷 𝐸𝐷 4) 𝐼𝑉 = 𝐸𝑂 7) 4) Corresponding sides in similar triangles are proportional ̅̅̅̅||𝐷𝐸 ̅̅̅̅ Given: 𝐴𝐵 𝐷𝐶 𝐷𝐸 Prove: 𝐵𝐶 = 𝐵𝐴 Statements Reasons ̅̅̅̅||𝐷𝐸 ̅̅̅̅ 1) 𝐴𝐵 1) Given 2) ∠D ≅ ∠B ∠E ≅ ∠A 2) Alternate Interior Angles Congruence Theorem 3) ∆DCE ~ ∆BCA 3) AA Similarity 𝐷𝐶 𝐷𝐸 4) 𝐵𝐶 = 𝐵𝐴 4) Corresponding sides in similar triangles are proportional ** Can also use vertical angles ** 8) ̅̅̅̅||𝐷𝐶 ̅̅̅̅ Given: 𝐴𝐵 𝐴𝐸 𝐶𝐸 Prove: 𝐴𝐵 = 𝐶𝐷 Statements Reasons ̅̅̅̅ 1) ̅̅̅̅ 𝐴𝐵 ||𝐷𝐶 1) Given 2) ∠BAC ≅ ∠ACD 2) Alternate Interior Angles Congruence Theorem 3) ∠BEA ≅ ∠CED 3) Vertical Angles are Congruent 4) ∆AEB ~ ∆CED 4) AA Similarity 𝐴𝐸 𝐶𝐸 5) 𝐴𝐵 = 𝐶𝐷 5) Corresponding sides in similar triangles are proportional 9) Given: ∆PQR and ∆UTS Prove: ∆PQR ~ ∆UTS Statements Reasons 1) PQ = 2.1, QR =1.8, RP = 3.6 1) Given UT = 3.5, TS = 3, RS = 6 𝑃𝑄 2.1 3 = 1.8 =5 = 3.6 3) 𝑈𝑇 = 𝑄𝑅 2) 𝑈𝑇 = 3.5 = 5 𝑄𝑅 𝑇𝑆 𝑅𝑃 𝑅𝑆 𝑃𝑄 3 6 𝑇𝑆 3 3 =5 = 𝑅𝑃 𝑅𝑆 4) ∆PQR ~ ∆UTS 10) 2) Division 3) Substitution 4) SSS Similarity Given: ∆ABC and ∆DEF are isosceles, ∠C ≅ ∠F Prove: ∆ABC ~ ∆DEF Statements Reasons 1) ∆ABC and ∆DEF are isosceles 1) Given ̅̅̅̅, ̅̅̅̅ 2) ̅̅̅̅ 𝐶𝐴 ≅ 𝐶𝐵 𝐷𝐹 ≅ ̅̅̅̅ 𝐸𝐹 2) Definition of isosceles triangle 3) CA = CB, DF = EF 3) Definition of congruent 𝐶𝐴 𝐵𝐵 4) 𝐷𝐹 = 𝐷𝐹 5) 𝐶𝐴 𝐷𝐹 = 𝐵𝐵 𝐸𝐹 4) Division 5) Substitution 6) ∠C ≅ ∠F 6) Given 7) ∆ABC ~ ∆DEF 7) SAS Similarity 11) Given: AD = 6, DC = 3, BE = 4, EC = 2 Prove: ∆CDE ~ ∆CAB Statements Reasons 1) AD = 6, DC = 3, BE = 4, EC = 2 1) Given 2) AC = AD + DC, BC = BE + EC 2) Segment Addition Postulate 3) AC = 6 + 3, BC = 4 + 2 3) Substitution 4) AC = 9, BC = 6 4) Simplify 𝐶𝐷 3 𝐶𝐷 𝐶𝐸 1 𝐶𝐸 2 1 5) 𝐶𝐴 = 9 = 3, 𝐶𝐵 = 6 = 3 12) 5) Division 6) 𝐶𝐴 = 𝐶𝐵 6) Transitive Property 7) ∠DCE ≅ ∠ACB 7) Reflexive Property 8) ∆CDE ~ ∆CAB 8) SAS Similarity Given: ∆ABC is isosceles with base ̅̅̅̅ 𝐴𝐶 ∠1 and ∠2 are right angles Prove: AE ∙ BD=CE ∙ DC Statements Reasons ̅̅̅̅ 1) ∆ABC is isosceles with base 𝐴𝐶 1) Given 2) ∠BAC ≅ ∠BCA 2) Base Angles Theorem 3) ∠1 and ∠2 are right angles 3) Given 4) ∠1 ≅ ∠2 4) All right angles are congruent 5) ∆AEC ~ ∆CDB 5) AA Similarity 𝐴𝐸 𝐶𝐸 6) 𝐷𝐶 = 𝐵𝐷 6) Corresponding sides of similar triangles are proportional 7) AE ∙ BD=CE ∙ DC 7) Multiplication 13) Given: ∆ACE and ∆AFE are isosceles with base ̅̅̅̅ 𝐴𝐸 Prove: ∆ABF ~ ∆EDF Statements Reasons 1) ∆ACE and ∆AFE are isosceles with base ̅̅̅̅ 𝐴𝐸 1) Given 2) ∠CAE ≅ ∠CEA, ∠FAE ≅ ∠FEA 2) Base Angles Theorem 3) ∠CAE = ∠CEA, ∠FAE = ∠FEA 3) Definition of congruent 4) ∠CAE = ∠CAF + ∠FAE 4) Angle Addition Postulate ∠CEA = ∠CEF + ∠FEA 14) 5) ∠CAF + ∠FAE = ∠CEF + ∠FEA 5) Substitution 6) ∠CAF + ∠FAE = ∠CEF + ∠FAE 6) Substitution 7) ∠CAF = ∠CEF 7) Subtraction 8) ∠CAF ≅ ∠CEF 8) Definition of congruent 9) ∠AFB ≅ ∠EFD 9) Vertical angles are congruent 10) ∆ABF ~ ∆EDF 10) AA Similarity Given: PQ = 6, QR = 6. SR = 4, ∠P ≅ ∠SQR Prove: TS = 4 Statements Reasons 1) ∠P ≅ ∠SQR 1) Given 2) ∠R ≅ ∠R 2) Reflexive Property 3) ∆PRT ~ ∆QRS 3) AA Similarity 𝑃𝑅 4) 𝑄𝑅 = 𝑇𝑅 𝑆𝑅 4) Corresponding sides of similar triangles are proportional 5) PQ = 6, QR = 6, SR = 4 5) Given 6) PR = PQ + QR 6) Segment Addition Postulate 7) PR = 6 + 6 = 12 7) Substitution 8) 12 6 = 𝑇𝑅 4 8) Substitution 9) TR = 8 9) Multiplication 10) TR = TS + SR 10) Segment Addition Postulate 11) 8 = TS + 4 11) Substitution 12) TS = 4 12) Subtraction 15) ̅̅̅̅||𝐷𝐸 ̅̅̅̅ , DC =5, EC = 10, AC = 12 Given: 𝐴𝐵 Prove: BC = 24 Statements Reasons ̅̅̅̅ 1) ̅̅̅̅ 𝐴𝐵 ||𝐷𝐸 1) Given 𝐴𝐶 𝐵𝐶 2) 𝐷𝐶 = 𝐸𝐶 2) Triangle Proportionality Theorem 3) DC =5, EC = 10, AC = 12 3) Given 4) 12 5 = 𝐵𝐶 10 4) Substitution 5) 5 ∙ BC = 120 5) Multiplication 6) BC = 24 6) Division ** Can also prove the triangles are congruent by AA instead of Triangle Proportionality Theorem ** Grading Scale 0 incorrect = 10 1 incorrect = 9 2 – 3 incorrect = 8 4 incorrect = 7 5 – 6 incorrect = 6 7 incorrect = 5
© Copyright 2026 Paperzz