UNIVERSITY OF NAIROBI UNIVERSITY EXAMINATIONS 2014/2015 FIRST YEAR CAT EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE CSC 114 DIFFERENTIAL AND INTEGRAL CALCULUS DATE: _______________TIME: _________________ Answer Question one and any other two Questions Question I (30 marks) [5] (a) Find dy/dt of y = e3t sin 4t ; y’ = ( c) Find dy/dx of ye x 3 y x 2 4 ; [5] (b) Find dy/dx of 1 ( d ) Evaluate y= 2 xe 4 x ; sin x [5] 3xe dx [5] 3. [5] (2 x2 1) 0 (e ) Find the area of the region bounded by x y 3, y x ( f ) Sketch the region R bounded by the graphs of the given equations and find the volume of the solid 2 generated by revolving R about the y axis: x y 2 ; y x 2 0 about the y axis. [5] Question II (10 marks) 5sec x ; [3] ( b ) Find dy/dx of y l n(4 x 5) tan3 x [3] 23 x (c ) Given f(x) = x3 6 x 2 9 x 1; find x values corresponding to all local extrema, points of (a) Find dy/dx of y inflections; and find regions of concavity; and where f increases/decreases; Sketch the graph of f.[4] Question III (10 marks) (a) Find dy/dx of y 52 x 2 x 1 .[3]; 3 2/3 (b) Evaluate 2 x 2 9 x 35 ( x 1)( x 2)( x 3) dx; (c) Find the area of the region bounded by y 2 4 x, y x 2. Question IV (10 marks) lim 3x 2 13x 10 2 ( a ) Find x 5 2 x 7 x 15 ; [3] (b) Evaluate . (c) Find the area of the region bounded by y 4 x 2 , y 5. [3]; [4] 3x ln 5xdx . [3] [4] Question V (10 marks). (a) A window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 15 ft, find the dimensions that will allow the maximum amount of light to enter. [5] ( b ) Sketch the region R bounded by the graphs of the given equations and find the volume of the solid generated by revolving R about the x axis: y x 2 , y 4 x 2 about the x axis. [5] -1- 1. e 2 x sin 3xdx = 1 2x 2 cos 3x cos 3x 2x 2 x cos 3 x 2x e ( sin 3x3dx) e 2 x e 2dx e 2 e cos 3x3dx 3 3 3 3 3 e 2x e 2x 2 2x 4 cos 3x 2 2 x 2x 2 x cos 3 x 2x sin 3xdx e 2 x 2 e sin 3x 2 e sin 3xdx e 2 e sin 3x 2 e sin 3xdx 3 3 3 3 3 sin 3xdx 9 2 x cos 3x 2 2 x e 2 e sin 3x Ans 13 3 3 2. sin 2 x 5 ln 3 5 x sin 2 x 5 ln 3 5 x 3 sin 2 xdx 35 x 3 sin 2 x 2dx 2 2 2 4 sin 2 x 5 ln 3 5 x 5 ln 3 5 x 35 x 3 cos 2 x 3 cos 2 xdx 2 4 1 3 cos 2 xdx 35 x 3 4 sin 2 x 5 ln 3 5 x cos 2 xdx 35 x 3 cos 2 x Ans 2 2 4 4 5 ln 3 5x 5x 3. 2 x sin 4 xdx (b) x2 cos 4 x x 2 cos 4 x sin 4 x 1 cos 4 x 2 x dx x cos 4 x Ans 4 4 4 8 32 lim 1 cos x x 0 3 x2 = lim 1 cos x lim 1/ 3 lim 1 cos x x o [5] 2/3 x0 x x0 x0 x 1 1 (c ) Given y 52 x ln 3x ; dy / dx 52 x (2 ln 5 ln 3x x ) 52 x (ln 52 ln 3x x ) [5]. 1 (d ) t sin( 3t )dt = 0 t cos(3t ) 3 1 0 3 sin( 3t ) 10 (e) The area is bounded by x 2 y 2 ; y 1 / 2 y 1 1 y 2 y dy 32 y (f) Given 2 3 y2 y 2 2 1 =0.106103[5] 3 x y 1Sol: 2 y 2 y 1 0 2 y 1 y 1 1/ 2 1 1 1 1 2 1 7 9 1 2 = 1.125[5]. 12 8 2 3 2 8 8 2 xdx ; 2x 3A Bx A 3B; 9B B 2; B 1 / 4; A 3 / 4 ; x 33x 1 -2- x 33x 1 4x 3 123x 1 ln x 3 2 xdx 3dx 3dx 3/ 4 ln 3x 1 1 / 12 +C[5] Question II (20 marks) t e dt t e 3 t (a) E 3 t 3[t 2 et 2[tet et ]] t 3et 3t 2 et 6et [t 1] +C[5] (b) lim x 4x 4 lim lim x 2 16 = 2 x x 4 32 [5] x4 x 4 2 x x 4 2 x (c) /3 /4 tan xdx = ln | cos x | // 34 ln( 1 / 2) ln 2 / 2 ln 2 / 2 0.3466 [5] Question III (20 marks) (a) d csc 2 x 32 x 2 csc 2 x cot 2 x 32 x 2 ln 3 csc 2 x [4]. 2x dx 3 (b) sec 3 x tan xdx sec 2 d sec x (sec 3 x) / 3 c [4]. 12] Question IV (20 marks) ln 3 x 2 3 cot 3 x (a) y ; dy / dx 3 cot 4 x csc 2 x ln 3x 2 [6] 3 cot x 3x 2 (b) cos 5 x sin 4 xdx 1 sin 2 sin 4 x cos xdx sin 4 x 2 sin 5 x sin 8 cos xdx . sin 5 2 sin 7 x sin 9 x C [6] 5 7 9 (c) The areaof the region bounded by y x; y 5x x 2 4 x x dx 2 x 4 2 0 = 4 2 x3 32 64 / 3 32 / 3 10.6667 [8] 3 0 Question V (20 marks) . ( c ) Sketch the region R bounded by the graphs of the given equations and find the volume of the solid generated by revolving R about the indicated axis: x y 2 ; x 1; about x 1. 1 1 16 V 2 2 1 x x1/ 2 dx 4 x1/ 2 x 3 / 2 dx 8 1 / 3 1 / 5 3.35 1.069 0 0 15 1 V 1 y 1 2 2 1 2 y3 y5 16 dy 1 2 y y dy y 1.069 3.35 1 3 5 1 15 1 2 4 [7] -3- lim 4 x tan 2 x ;[6] x 0 sin 5 x (a) Determine (c) Evaluate 3 0 2 x 3x 2 1 1/2 dx; [6] (b) Find dy/dxof y e5 x tan 3x ln 2 x 54 x [6]. (e) Find the area of the region bounded by x 2 y y 2 , x 3 y 2. [6] Question II (20 marks) lim x 2 16 (b) Determine ; [5] (c ) Evaluate : x 4 2 x 5x 4 x Question III (20 marks) 5sec x (a) Find dy/dx of 3 x ; [8Question IV (20 marks) 2 ln(4 x 5) (a) Find dy/dxof y [6] (b) Evaluate tan 3 x 2 3 3 dx . [5 3x ln 5xdx . [6] (c) Find the area of the region bounded by y 4 x 2 , y 4. [8] Question V (20 marks) . 3x 2 3 (a) Given f(x) = x 18 x 5; find x values corresponding to all local extrema, points of 2 inflections; and find regions of concavity; and where f increases/decreases; then sketch the graph of f. [10] (b) Sketch the region R bounded by the graphs of the given equations and find the volume of the solid generated by revolving R about the indicated axis: y x 2 , y 4 x 2 about the x axis. [10] lim 4 x tan 2 x (a) Determine ;[6](b) Find dy/dxof y e5 x tan 3x ln 2 x 54 x [6]. x 0 sin 5 x (c) Evaluate 3 0 2 x 3x 2 1 1/2 dx; [6 (e) Find the area of the region bounded by x 2 y y 2 , x 3 y 2. [6] Question II (20 marks) lim x 2 16 (b) Determine ; [5](c ) Evaluate : x 4 2 x 3 2 5 x 4 x 3 dx . [5 Question III (20 marks) 5sec x ln(4 x 5) (a)Find dy/dx of 3 x ; [(a) Find dy/dxof y [6] (b) Evaluate 2 tan 3 x Find the area of the region bounded by y 4 x 2 , y 4. 3x ln 5xdx . [6](c) [8] Question V (20 marks). -4- 3x 2 18 x 5; find x values corresponding to all local extrema, points of 2 inflections; and find regions of concavity; and where f increases/decreases; then sketch the graph of f. (a) Given f(x) = x3 [10] (b) Sketch the region R bounded by the graphs of the given equations and find the volume of the solid generated by revolving R about the indicated axis: y x 2 , y 4 x 2 about the x axis. [10] lim 2 x2 5x 3 (a) Determine ;[5](b) Find dy/dtof 52t ln 3t; 2 x 1/ 2 6 x 7 x 2 1 (c) Evaluate 3xe(2 x 2 1) 0 dx; [5] [5](d) (e) Find the area of the region bounded by y x 2 1, x 1; x 2; y 0 ; [5 Question II (20 marks) lim 1 cos x b) Determine [5](c ) Evaluate x 0 3 x2 5 x 2 2 x 19 x 3 x 1 2 dx. [5 Question III (20 marks) (a) [8] Find dy/dx of f(x) = e3 x tan x ln csc2 3x ; Question IV (20 marks) 2 xe 4 x (a) Find dy/dx of f(x) = ; [6](b) Evaluate x 2 sin xdx [6] sin x (c) Sketch the region R bounded by the graphs of the given equations and find the volume of the solid generated by revolving R about the indicated axis: x y 2 ; y x 2 0 about the y axis. [8] Question V (20 marks) (a) Given f(x) = 2 x3 x 2 4 x 2; find x values corresponding to all local extrema, points of inflections; and find regions of concavity; and where f increases/decreases; Sketch the graph of f.[10] (b) Find the area of the region bounded by x y 3, y x 2 3. [10] lim 3x 2 13x 10 (a) Find ; x 5 2 x 2 7 x 15 (c) Evaluate: 1 2xe 0 6 x 1 dx; [5](b 5 ) Evaluate 3 x 1 dx; 1 0 [5] [5 (e Question II (20 marks) lim 2 x3 6 x 2 x 3 ; [4]Question III (20 marks) (a) Find x 3 x 3 (a) Find dy/dtof y 52 x 2 x 1 .[6](b) Evaluate 3 2/3 /3 3sin 2 3xdx; [6](c) Find the area of the 0 region bounded by y 2 4 x, y 2 x 2. [8] -5- Question IV (20 marks) 1 (a) Find dy/dxof ye 3 x 4 ;[6](b) Evaluate x y 2 5xe 4x dx; [6] 0 (c) Sketch the region R bounded by the graphs of the given equations and find the volume of the solid generated by revolving R about the indicated axis: y x 2 4 x, y 0. [8] Question V (20 marks) . 2 x 2 9 x 35 (a)Find dy/dtof e sin 4t; [6] (b) Evaluate dx; [8] ( x 1)( x 2)( x 3) (c ) Given f(x) = x3 6 x 2 9 x 1; find x values corresponding to all local extrema, points of 3t inflections; and find regions of concavity; and where f increases/decreases; Sketch the graph of f.[6] Vertical, Horizontal and ObliqueAssymptotes: x2 9 5 x / 2 1 with oblique assymptotes y x / 2 1; VA : x 2; 2 x 2 2x 4 2 x2 2 x2 ; VA : x 3; x 3; H . A : y 2 9 x 2 3 x 3 x Sketch the graphs of f and determine the asymptotes for 3 ; 2x 1 x2 4 x2 3 ; x 1 x 2 lim x 8 lim x 2/3 2 x1/3 4 12 Ans ; [4] 3 x 8 x 2 x 8 2 lim 2 x 5x 3 lim (2 x 1)( x 3) 3.5 (b) 7 Ans ;[4] 2 x 1 / 2 6 x 7 x 2 x 1 / 2 (2 x 1)(3 x 2) 0.5 lim 1 cos x lim 1/3 1 cos x x 0.0 0 Ans ; [4] (c) 3 2 x0 x0 x x 1. (a) 2. (a) Given f(x) = e3 x tan x ln csc2 3x ; 1 6csc2 3x cot 3x f’(x) = 3e3 x tan x e3 x sec2 x csc2 3x 2 x 1 3e3 x tan x e3 x sec2 x 6cot 3x Ans[5] 2 x 3 sec x cot (3x 1)3sec3 x tan x 3csc2 (3x 1)sec3 x (b) y ; y’ = Ans[5] cot(3x 1) cot 2 (3x 1) 3 3. (a) (52t ln 3t )' (52t 2ln 5ln 3t ) (52t ) Ans[5] 3t 2sin xe 4 x 4 x 1 2 xe 4 x cos x sin x 4 x 1 2e 4 x 2e 4 x x cos x 2 xe 4 x (b) ( )' Ans[5] 2 2 sin x sin x sin x f’(x) = 3x 2 4 x 1 3 1 2. x 4 42 12 2 2 7 22 7 ; hence or 6 3 3 -6- x3 2 x 2 x 3 on [1,1] satisfies the Hypotheses of Mean Value theorem. Ans[10] 5. Given f(x) = (2 x3 x 2 4 x 2)'' 2(3x 2 x 2)' 2[(3x 2)( x 1)]' 2(6 x 1) At x = -2/3 f is max; at x = 1; f is min. Pi is at x = 1/6; hence incr. on ( , 2 / 3 1, ; fdecr. on 2 / 3,1. f is CD on ,1/ 6 . and is CU on 1/ 6, . Ans[8]Sketch the graph of f. /3 6. (2sec2 3cos2 )d 2tan / 3 (3 / 2)sin 2 / 3 2tan / 6 (3 / 2)sin / 3 /6 3 3 2 3 3 3 2 3 4 3 2 3 Q E D [10] 2 4 3 4 3 3 5 x 2 2 x 19 A Bx B C Ax 2 2 Ax A Bx 2 x(C B) 3Bx 3(C B) 7. 2 2 x 3 x 1 x 3 ( x 1)2 ( x 1)2 x 3 x 1 5 = A + B; -2 = -2A + C – B +3B = -2(5-B) +C+2B = -10 +4B + C 8 = 4B + C; -19 = 5 – B -3B + 3C ; -24 = -4B +3C = -4B +24 – 12B -48 = -16B. B = 3; A = 2; C = -4 5 x 2 2 x 19 2dx 3dx 4dx . dx. 2ln( x 3) 3ln x 1 4( x 1) 1 C 2 2 x 3 x 1 ( x 1) x 3 x 1 2ln( x 3) 3ln x 1 4( x 1)1 ln( x 3)2 x 1 4( x 1)1 Ans[10] 3 = Ans [10] 9. Evaluate 1 0 10. x 2 x 2 1 2 2 2 tan 2tdt 2 1 sec 2t dt 2t tan 2t 0 tan 2 2 Ans[10] 1 0 sin xdx x 2co s x 2 xco s xdx; xco s xdx x sin x sin xdx x sin x cos x sin xdx x 2co s x 2 x sin x cos x cos x 2 x 2 2 x sin x Ans[10] -7-
© Copyright 2026 Paperzz