C Quasi-linear Theory • Velocity-space diffusion rate (∇v)2 ∝ E2 2t where E is the amplitudes of the linear-theory modes Squares of E → “Quasi-linear” Dv = • Motivation of the development of quasi-linear theory. – Microinstabilities form an important part of wave theory. – And the questions arise, how will the mode amplitude grow? – What is the instability saturation mechanism? – Bibliography ∗ W.E. Drummond and D.Pines (1961): “Nonlinear stability of Plasma Oscillations, General Atomic” GA-2386 (1961) ∗ A.A.Vedenov, E.P.Velikhov and R.Z. Sagdeev (1961): “Nonlinear Oscillations of Rare field Plasma” Nuclear Fusion 1, 82 (1961) ∗ Yu.A.Romanov and G.Filippov (1961): “The Interaction of Fast Electron Beams with Longitudinal Plasma Waves” sov.phys.JETP 13, 87 (1961) – In which it was found that a temporally growing micro-instability acts back on the zero-order velocity distribution function. – Its effect on the distribution function is to produce velocity-space diffusion. – The diffusion tends to flatten f0 (~v ) in this region and drive the instability growth rate to zero. – This saturation process can be viewed as a continuous diffusion through which the zero-order distribution function evolves slowly in time. – Two assumptions in quasi-linear theory. ∗ The amplitudes of the perturbations in the plasma are not so large as to invalidate the use of zero-order orbits and of the spatially averaged distribution function, f0 (~v , t) =< f0 (~r, ~v , t) > ∗ The effective wave spectrum should be sufficiently dense. Any appreciable coherence between modes will be destroyed by phase mixing. • Electromagnetic Quasi-linear Theory ³ ´ ∂f ~v· E ~ + ~v × B ~ f = 0 (∗f = f (~r, ~v , t)) ~ + q∇ + ~v · ∇f ∂t m Averaging over a number of space and time periods of the rapid fluc~ 0 , we also average over the tuations. In addition, in presence of B 180 Figure 38: Velocity distribution for “bump-on-tail” instability. Real part of unstable frequencies are such that v = ω0 (k)/k lies in region where vdf0 /dv is positive (opposite sense to Landau damping). Quasi-linear diffusion due to these modes tends to flatten out the bump. gyro-angle in velocity space: ¿ À ¿ À ´ E ∂f0 (~v , t) ∂f ∂f q D~ ³ ~ ~ f = = − ~v − ∇v · E + ~v × B ∂t ∂t ∂z m slow evolution of f0 (~v , t) = hf (~r, ~v , t)i D E ∂f Space averaging : ∂z = 0 < E >= 0 D ³ ´ E Higher order contributions to ∇ ~v· E ~ + ~v × B ~ f are neglected ∂f0 ∂t ¿Z 2π ´ À q dφ ~ ³ ~ ~ ≃ − ∇v · E1 + ~v × B1 f1 m 2π 0 Z ´ q X 1 2π dφ ~ ³ ~ ∇v · Ek + ~v × B~k f−k = − m V 0 2π modes where V is the volume and we used Fourier formalism of Z 1 ∞ dωA(−ω)B(ω) < A(t)B(t) >= lim T →∞ T −∞ Z 1 ∞ 3 d k(−k)B(k) < A(z)B(z) >= lim V →∞ V −∞ 181 f−k = f (ω−k , −~k, ~v ) = f ∗ (ωk , ~k, ~v ) (∵ f1 (~r, ~v , t) is real.) since B~1 = ~k ω × E~1 ~k~v ~k · ~v )+ ] · E~k E~k + ~v × B~k = [1(1 − ω ω Also, ~v = x̂v⊥ cos φ + ŷv⊥ sin φ + ẑvk = ρ̂v⊥ + ẑvk ~ v = ρ̂ ∂ + φ̂ 1 ∂ + ẑ ∂ ∇ ∂v⊥ v⊥ ∂vφ ∂vk ~k = x̂k⊥ cos θ + ŷk⊥ sin θ + ẑkk = ρ̂k⊥ cos(φ − θ) − φ̂k⊥ sin(φ − θ) + ẑkk ~ = x̂Ex + ŷEy + ẑEz E = ρ̂(−Ex cos φ + Ey cos φ) + ẑEz where ρ̂ is the unit vector in the direction of v~⊥ , and φ̂ = ẑ × ρ̂. 182 ~ v · (E ~ + ~v × B) ~ k f−k = 1 ∂ v⊥ [(E ~ + ~v × B) ~ k f−k ]ρ + 1 ∂ v⊥ [(E ~ + ~v × B) ~ k f−k ]φ ∇ v⊥ ∂v⊥ v⊥ ∂vφ ∂ ~ + ~v × B) ~ k f−k ]k v⊥ [(E + ∂vk ~ ~ ~ k ]ρ f−k ~ + ~v × B) ~ f−k ] = [(1(1 − k · ~v ) + k~v ) · E (1)[(E k ρ ω ω 1 = [1 − (k⊥ v⊥ cos(φ − θ) + kk vk )](Ekx cos φ + Eky sin φ)f−k ω 1 + [v⊥ (Ekx cos φ + Eky sin φ) + vk Ez ]kperp cos(φ − θ)f−k ω 1 ∂ 1 ∂ ∴ v⊥ [· · · ]ρ = ([· · · ]ρ ) + [· · · ]ρ v⊥ ∂v⊥ v⊥ ∂v⊥ k⊥ 1 [· · · ]ρ + [− cos(φ − θ)(Ekx cos φ + Eky sin φ)f−k ] = v⊥ ω ∂f−k 1 + [1 − (k⊥ v⊥ cos(φ − θ) + kk vk )](Ekx cos φ + Eky sin φ) ω ∂v⊥ 1 + (Ekx cos φ + Eky sin φ)k⊥ cos(φ − θ)f−k ω 1 ∂f−k + [v⊥ (Ekx cos φ + Eky sin φ) + vk Ez ]k⊥ cos(φ − θ) ω ∂v⊥ ~k~v ~k · ~v ~ k ]φ f−k ~ + ~v × B) ~ f−k ] = [(1(1 − )+ )·E (2)[(E k φ ω ω 1 = [1 − (k⊥ v⊥ cos(φ − θ) + kk vk )](−Ekx sin φ + Eky cos φ)f−k ω 1 + [v⊥ (Ekx cos φ + Eky sin φ) + vk Ez ](−k⊥ sin(φ − θ))f−k ω 1 ∂ 1 1 ∂f−k ∴ [· · · ]φ = [1 − (k⊥ v⊥ cos(φ − θ) + kk vk )](−Ekx sin φ + Eky cos φ) v⊥ ∂vφ v⊥ ω ∂vφ 1 1 ∂f−k + [v⊥ (Ekx cos φ + Eky sin φ) + vk Ez ](−k⊥ sin(φ − θ)) v⊥ ω ∂vφ ~ ~ ~ + ~v × B) ~ f−k ] = [(1(1 − k · ~v ) + k~v ) · E ~ k ]k f−k (3)[(E k k ω ω 1 = [1 − (k⊥ v⊥ cos(φ − θ) + kk vk )]Ekz f−k ω 1 + [v⊥ (Ekx cos φ + Eky sin φ) + vk Ekz ]kk f−k ω 1 ∂f−k ∂ [· · · ]k = kk Ekz f−k + [1 − (k⊥ v⊥ cos(φ − θ) + kk vk )]Ekz ∴ ∂vk ω ∂vk 1 1 ∂f−k + Ekz kk f−k + [v⊥ (Ekx cos φ + Eky sin φ) + vk Ekz ]kk ω ω ∂vφ Thus, ~ v · [(E ~ + ~v × B) ~ f−k ] = cos(φ − θ)[(Ek + + Ek − )Sf−k − Ekz T f−k ] ∇ k 1 ∂ ∂f−k + (· · · ) − i sin(φ − θ)(Ek + + Ek − )Sf−k + Ekz ∂vk v⊥ ∂vφ 183 where kk v⊥ ∂f−k kk vk 1 ∂ ) (v⊥ f−k ) + ω v⊥ ∂v⊥ ω ∂vk k⊥ vk 1 ∂ k⊥ v⊥ ∂f−k − (v⊥ f−k ) = ω ∂vk ω v⊥ ∂v⊥ Sf−k = (1 − T f−k 1 Ek± = (Ekx ± iEky )e∓iθ 2 and ùE ( kx cos φ Ekx ≡ Ex (~k), Eky ≡ Ey (~k), Ekz ≡ Ez (~k) + Eky sin φ = cos(φ − θ)(Ek+ + Ek− ) − i sin(φ − θ)(Ek+ − Ek− ) Ans.) 1 1 [Ekx e−iθ + iEky e−iθ ] + [Ekx eiθ − iEky eiθ ] 2 2 1 [Ekx (cos θ − i sin θ) + iEky (cos θ − i sin θ)] = 2 1 [Ekx (cos θ + i sin θ) − iEky (cos θ + i sin θ)] + 2 = Ekx cos θ + Eky sin θ Ek+ + Ek− = Ek+ − Ek− = −iEkx sin θ + iEky cos θ = −i(Ekx sin θ − Eky cos θ) cos(φ − θ)(Ek+ + Ek− ) − i sin(φ − θ)(Ek+ − Ek− ) = (cos φ cos θ + sin φ sin θ)(Ekx cos θ + Eky sin θ) −i(sin φ cos θ − cos φ sin θ)(−i)(Ekx sin θ − Eky cos θ) = Ekx cos φ + Eky sin φ) But, fk = − q X X −i(n−m)(φ−θ) k⊥ v⊥ k⊥ v⊥ )Jn ( ) e Jm ( m n m Ω Ω ×{cos(φ − θ + Ωτ )[(Ek+ + Ek− )U ′ − Ekz V ] ∂f0 } −i sin(φ − θ + Ωτ )(Ek+ − Ek− )U ′ + Ekz ∂vk Z ∞ 0 dτ exp [(ω − kk vk − nΩ)τ ] Remember f1 obtained for the calculation of the first-order Vlasov equation with the simple replacement of φ by φ − θ and τ by −τ where kk ∂f0 ∂f0 ∂f0 1 U′ = + (v⊥ − vk )= U ∂v⊥ ω ∂vk ∂v⊥ ω k⊥ ∂f0 ∂f0 V = (v⊥ − vk ) ω ∂vk ∂v⊥ nΩ ∂f0 1 nΩ ∂f0 ) + vz = W W ′ = (1 − ω ∂vk ωv⊥ ∂vk ω 184 1 2π Z 2π 0 ~v · [(E~k + ~v × B~k )∗ fk ] dφ∇ ∞ X n {[(Ek+ + Ek− )S − Ekz T ] Jn (λ) + (Ek+ − Ek− )SJn′ (λ) λ n=−∞ Z ∞ q ∂ ∗ } {(− +Ekz Jn (λ) dτ ei(ω−kk vk −nΩ)τ )} ∂vk m 0 n ×{ Jn (λ)[(Ek+ + Ek− )U ′ − Ekz V ] λ ∂f0 +Jn′ (λ)(Ek+ − Ek− )U ′ + Jn (λ)Ekz } ∂vk P P P R φ integral n m → n , dτ → nλ Jn , Jn′ But, = ù n ∂f0 − V + λ ∂vk nΩ k⊥ v⊥ ∂f0 k⊥ vk ∂f0 ∂f0 ( − )+ k⊥ v⊥ ω ∂vk ω ∂v⊥ ∂vk nΩ ∂f0 nΩvk ∂f0 ) + = W′ = (1 − ω ∂vk ωv⊥ ∂v⊥ vk ′ ω − kk vk − nΩ ∂f0 vk ∂f = U + ( − ) v⊥ ω ∂vk v⊥ ∂v⊥ vk ′ = U v⊥ = − ∗ J (λ) The Coefficient of Ekz n n ∂ − T+ λ ∂vk k⊥ vk 1 ∂ ∂ nΩ k⊥ v⊥ ∂ ( v⊥ ) + − k⊥ v⊥ ω ∂vk ω v⊥ ∂v⊥ ∂vk nΩvk 1 ∂ nΩ ∂ = (1 − ) + v⊥ ω ∂vk ωv⊥ v⊥ ∂v⊥ ω − kk vk − nΩ ∂ vk 1 ∂ vk S+ ( − v⊥ ) = v⊥ ω ∂vk v⊥ v⊥ ∂v⊥ vk = S v⊥ = − 1 2π Z 2π 0 −→ −i ~v· dφ∇ h³ ~k + ω ~k E ~ ×B ´∗ fk i q X 1 Ak U ′ SA∗k m ω − kk vk − nΩ n hn i i o hn where Ak = v⊥ Ek+ Jn (λ) + Jn′ (λ) + Ek− Jn (λ) − Jn′ (λ) + vk Ekz Jn (λ) λ λ = v⊥ Ek+ Jn−1 (λ) + v⊥ Ek− Jn+1 (λ) + vk Ekz Jn (λ) 185 Thus, a remarkably compact expression for “quasi-linear evolution” ∞ ∂f0 (v⊥ , vk , t) πq 2 X 1 X Lδ(ωk − kk vk − nΩ)|A|2 Lf0 = 2 ∂t m ωk2 −∞ modes L is the operator, such that L = (ωk − kk vk ) 1 ∂ ∂ 1 ∂ ∂ + kk = nΩ + kk v⊥ ∂v⊥ ∂vk v⊥ ∂v⊥ ∂vk We used Plemelj relation 1 =P ωkv µ 1 ωkv ¶ − iπδ(ω − kv) n Jn (x) + Jn′ (x) x n Jn+1 (x) = Jn (x) − Jn′ (x) x Jn−1 (x) = Thus, µ · ¶¸ ∞ ½ ³ e ´2 X ∂f0 (~v , t) 1 ∂ ∂f0 2 nΩ ∂f0 nΩδ(ω − kk vk − nΩ)|A| =π + kk ∂t mω −∞ v⊥ ∂v⊥ v⊥ ∂v⊥ ∂vk · µ ¶¸¾ ∂f0 nΩ ∂f0 ∂ + kk kk δ(ω − kk vk − nΩ)|A|2 + ∂vk v⊥ ∂v⊥ ∂vk Let E + = Ex + iEy (left-hand polarization) E − = Ex − iEy (right-hand polarization) 1 Ak = 2 ∴ µ ¶ vk 1 + −iθ − iθ v⊥ E e Jn−1 + v⊥ E e Jn+1 + 2 Ez Jn ⇒ A v⊥ 2 · µ ¶¸ ∞ ½ ³ e ´2 X ∂f0 nΩ ∂f0 1 ∂ ∂f0 nΩδ(ω − kk vk − nΩ)|A|2 =π + kk ∂t 2mω −∞ v⊥ ∂v⊥ v⊥ ∂v⊥ ∂vk · ¶¸¾ µ ∂f0 nΩ ∂f0 ∂ + kk kk δ(ω − kk vk − nΩ)|A|2 + ∂vk v⊥ ∂v⊥ ∂vk where A = v⊥ E + e−iθ JN −1 + v⊥ E − eiθ JN +1 + 2 186 vk Ez JN v⊥
© Copyright 2025 Paperzz