All-to-all broadcast problems on Cartesian product graphs Jen-Chun Lin 林仁俊 指導教授:郭大衛教授 國立東華大學 應用數學系碩士班 Outline • Introduction • Main result mn 1 1. t (Cm □C n ) for all m, n 3 2 m(2n 1) 1 2. t (Cm □K 2 n 1 ) for all m, n, m 3, n 1 n 1 4mn 2m 2n 3. t ( K 2 m 1□K 2 n 1 ) for all m, n, m n 1 mn 4 n 1 4. t (Q2 n ) for all n Ν n • Reference Introduction Suppose each vertex has a private message needed to send to every other vertices(all-to-all broadcast). At each time unit, vertices exchange their messages under the following constraints: (1) only one message can travel a link at a time unit (2) a message requires one time unit to be transferred between two nodes (3) each vertex can use all of its links at the same time Chang et al. They gave upper and lower bounds for all-toall broadcast number t G (the shortest time needed to complete the all-to-all broadcast) of graphs and give formulas for the all-to-all broadcast number of trees, complete bipartite graphs and double loop networks under this model. All-to-all broadcasting numbers of Cartesian product of cycles and complete graphs Given a graph G and a positive integer t, we use G◦t to denote the multigraph obtained from G by replacing each edge uv in E(G) with k edges uv 1 , uv 2 ,..., uv t . AB2 AB 1 AD 3 AB 3 1 ② ③ 2 BC 1 ① AD 1 AD 2 ①② ③ 4 CD3 G3 ③ ② ②① ③ 3 ① CD 1 BC 3 BC 2 CD 2 AB 1 H A3 BC 2 DA 3 DA BC 1 CD3 CD 2 AB AB 3 2 1 H B3 H 3 D BC 3 DA2 H C3 CD 1 For a graph G with V G v0 , v1 ,..., vn1, a set of t t t H , H ,..., H edge-disjoint subgraphs v0 v1 vn1 of G◦t is a t-broadcasting system of G. 3 - broadcasti ng system Theorem mn 1 t (Cm □C n ) for all m, n 3 2 The broadcasting tree H100,0 of C4 □C5 10 for a0,0 . ① ② ③ 0,0 2,0 3,0 1,0 ① ② 0,1 ③ 1,1 2,1 ④ 3,1 ④ 0,2 ⑤ ⑤ 1,2 ⑥ 0,3 1,3 ⑧ 0,4 ⑥ ⑦ 2,2 3,2 ⑦ 2,3 ⑧ 3,3 ⑨ ⑨ 1,4 2,4 ⑩ 3,4 The broadcasting tree⑧ H 100,0 0,0 0,1 1, 2 of C4 □C5 10 for a1,2. 2,0 1,0 ⑩ 4,5 3,0 ⑧ 1,1 ⑨ ⑨ 2,1 3,1 ③ 0,2 0,3 ⑤ ⑦ 0,4 1,2 ① 2,2 ① ④ ② 1,3 ⑥ 2,3 ② 3,2 ③ ⑦ 3,3 ④ 1,4 ⑤ 2,4 ⑥ 3,4 Lemma Given a graph G, t G t if and only if there exists a t-broadcasting systm of G. mn 1 t (Cm □C n ) t 2 Lemma For any graph G with V G n and EG m , n(n 1) t G m mnmn 1 mn 1 t (Cm □C n ) 2 mn 2 Theorem mn 1 t (Cm □C n ) for all m, n 3 2 Theorem m(2n 1) 1 t (Cm □K 2 n 1 ) for all m, n, m 3, n 1 n 1 The perfect broadcasting tree H 70,0 of C5 □K5 8 for a0,0 . ② ① ③ ④ 0,0 2,0 3,0 4,0 1,0 ① 0,1 ① ③ 1,1 2,1 1,2 ⑤ 3,2 2,2 0,3 ② 0,4 ⑤ ⑦ 1,3 1,4 ⑥ ⑧ 2,3 4,2 ⑧ 3,3 4,3 ⑧ ⑦ 2,4 4,1 ⑥ ⑦ ② ⑥ 3,1 ⑤ ④ ③ 0,2 ④ 3,4 4,4 Theorem 4mn 2m 2n t ( K 2 m 1□K 2 n 1 ) for all m, n, m n 1 mn For positive integers m and n with m n 1. We set m ,n 2n, when m 2n m ,n m, when 2n m 3n 3n, when m 3n m,n The subgraph H 60,0 of K9 □K5 6. 1 0,0 1 1 1,0 1 2,0 3 2 1 4,0 3,0 3 2 3 2 6,0 5,0 3 2 4 7,0 5 8,0 6 0,1 3 1 0,2 4 4 4 5 5 5 6 6 6 4 2 0,3 5 2 0,4 6 3 4 5 6 0,0 1,0 2,0 3,0 4,0 6,0 5,0 7,0 8,0 0,1 7 0,2 7 7 7 0,3 7 0,4 7 8 8 All-to-all broadcasting numbers of hypercubes Theorem 4 n 1 t (Q2 n ) for all n 1 n 0 Definition Qn P2 □ P2 □...□ P2 n個P2 Q2 n P2 □ P2 □...□ P2 □ P2 □...□ P2 3 2n個P2 1 2 C 4 □C 4 □...□C 4 n個 let V(Q2 n ) a0 , a1 ,..., an 1 : ai 0,1,2,3 i,1 i n E( Q2 n ) a0 , a1 ,..., an 1 b0 , b1 ,..., bn 1 : bi ai 14 and b j a j j i For a vertex v a0 , a1 ,..., an1 in V Q2n , the weight of v , n 1 denoted by wv , is defined by wv ai . i 0 Definition n A For the set A A A, the right-shift of n n A elements in A is a function from to An defined By k a0 , a1 ,..., an 1 = ak , ak 1 ,..., an1 , a0 , a1 ,..., ak 1 a0 , a1 ,..., an 1 An . k , 0 k n 1. ex: 3 1,2,3,0,1 = 0,1,1,2,3 Definition • the orbit of v, denoted by Ov . Ov k v : k 0,1,2,..., n 1 • A vertex v in V Q2n is said to be type1 : if Ov n n type2 : if Ov n Ov 2 Definition Let Α v V Q2 n :v is type 1, and Let v V Q2 n :v is type 2 Theorem 4 n 1 t (Q2 n ) for all n Ν n (0,0,………,0) 方向1 方向2 wv 1 wv 2 方向n ……… (1,0,………,0) (0,1,………,0) (2,0,………,0) (1,0,………,1) (0,2,………,0) (0,0,………,1) (0,0,………,2) (1,1,………,0) Lemma For each v in Α with wv 2, there exists a vertex u in A with uv E Q2 n and wu wv 1. Lemma If v a0 , a1 ,..., an 1 is in B , then i, 0 i n 1, ui a0 , a1 ,..., ai 14 ,..., an1 is in A. (0,1,………,1) A (1,1,………,1) B 0,0 1 0,1 7 2 1,1 0,2 0,3 tree H 80,0 of Q4 8. 1,0 2 4 The perfect broadcasting 1 2,0 3 4 1,2 3 3,0 2,1 5 3,1 6 3,2 5 1,3 7 2,2 6 2,3 8 3,3 Thanks for your listening!
© Copyright 2026 Paperzz