Von Neumann-Morgenstern Utilities and Cardinal Preferences Chichilnisky, G. IIASA Collaborative Paper September 1983 Chichilnisky, G. (1983) Von Neumann-Morgenstern Utilities and Cardinal Preferences. IIASA Collaborative Paper. IIASA, Laxenburg, Austria, CP-83-038 Copyright © September 1983 by the author(s). http://pure.iiasa.ac.at/2344/ All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting [email protected] NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR VON NEUIM-?lORGENSTERN UTILITIES AND CARDINAL PREFERENCES Graciela Chichilnisky September 1 9 8 3 CP-83-38 C o Z Z a b o r a t i v e P a p e r s r e p o r t work which h a s n o t been performed s o l e l y a t t h e I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d Systems A n a l y s i s and which h a s r e c e i v e d o n l y V i e w s o r opinions expressed herein l i m i t e d review. do n o t n e c e s s a r i l y r e p r e s e n t t h o s e of t h e I n s t i t u t e , i t s N a t i o n a l Member O r g a n i z a t i o n s , o r o t h e r o r g a n i z a t i o n s s u p p o r t i n g t h e work. INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS Laxenburg, A u s t r i a A-2361 FOREWORD T h i s C o l l a b o r a t i v e Paper i s one of a s e r i e s embodying t h e outcome of a workshop and c o n f e r e n c e on Economic S t r u c t u r a l Change: A n a l y t i c a l I s s u e s , h e l d a t IIASA i n J u l y and August 1983. The c o n f e r e n c e and workshop formed p a r t of t h e cont i n u i n g IIASA program on P a t t e r n s of Economic S t r u c t u r a l Change and I n d u s t r i a l Adjustment. S t r u c t u r a l change was i n t e r p r e t e d v e r y b r o a d l y : t h e t o p i c s c o v e r e d i n c l u d e d t h e n a t u r e and c a u s e s of changes i n d i f f e r e n t s e c t o r s of t h e world economy, t h e r e l a t i o n s h i p between i n t e r n a t i o n a l m a r k e t s and n a t i o n a l economies, and i s s u e s of o r g a n i z a t i o n and i n c e n t i v e s i n l a r g e economic systems. There i s a g e n e r a l c o n s e n s u s t h a t i m p o r t a n t economic s t r u c t u r a l changes a r e o c c u r r i n g i n t h e world economy. There a r e , however, s e v e r a l a l t e r n a t i v e a p p r o a c h e s t o measuring t h e s e c h a n g e s , t o modeling t h e p r o c e s s , and t o d e v i s i n g a p p r o p r i a t e r e s p o n s e s i n t e r m s o f p o l i c y measures and i n s t i t u t i o n a l redesign. O t h e r i n t e r e s t i n g q u e s t i o n s c o n c e r n t h e r o l e of t h e i n t e r n a t i o n a l economic system i n t r a n s m i t t i n g such c h a n g e s , and t h e merits o f a l t e r n a t i v e modes of economic o r g a n i z a t i o n i n r e s p o n d i n g t o s t r u c t u r a l change. A l l of t h e s e i s s u e s were a d d r e s s e d by p a r t i c i p a n t s i n t h e workshop and c o n f e r e n c e , and w i l l be t h e f o c u s of t h e c o n t i n u a t i o n o f t h e r e s e a r c h p r o g r a m ' s work. G e o f f r e y Heal A n a t o l i Smyshlyaev Ern6 Z a l a i VON NEUMANN-MORGENSTERN UTILITIES AND CARDINAL PREFERENCES* Graciela Chichilnisky** Abstract We study the aggregation of preferences when intensities are taken into account: the aggregation of cardinal preferences and also of von NeumannMorgenstern utilities for cases of choice under uncertainty. We show that with a finite number of choices, there exist no continuous anonymous aggregation rules that respect unanimity for such preferences or utilities. With infinitely many (discrete sets of) choices, such rules do exist and they are constructed here. However, their existence is not robust: each is a limit of rules that do not respect unanimity. Both results are for economies with a finite number of individuals. The results are obtained by studying the global topological structure of spaces of cardinal preferences and of von Neumann-Morgenstern utilities. with-a finite number of choices, these spaces are proven-to be noncontractible. With infinitely many choices, on the other hand, they are proven to be contractible. * This research was supported by UNITAR and by NSF Grant No. SES-7914050. I thank L.J. Billera, G. Bergmann,L. Gevers, 0. Hart, G. Heal, J.F. Mertens, and a referee for comments and suggestions. Columbia University, New York, USA. ** 1. Introduction The a g g r e g a t i o n o f p r e f e r e n c e s s t u d i e d i n s o c i a l c h o i c e t h e o r y t y p i c a l l y d e s c r i b e s an i n d i v i d u a l p r e f e r e n c e a s a r a n k i n g among c h o i c e s , i . e . , i n o r d i n a l terms. I n most of t h e l i t e r a t u r e f o l l o w i n g Arrow's and B l a c k ' s p i e c e s [l] [3], i n t e n s i t i e s o f p r e f e r e n c e s a r e not recorded; i n p a r t i c u l a r , i t i s not p o s s i b l e t o express whether a c h o i c e x i s p r e f e r r e d t o another y more t h a n t o a t h i r d , z . Since most o f t h e r e s u l t s i n t h e a g g r e g a t i o n o f o r d i n a l p r e f e r e n c e s a r e n e g a t i v e , i t seems n a t u r a l t o i n q u i r e whether more p o s i t i v e r e s u l t s can be o b t a i n e d when t h i s p r o p e r t y is r e l a x e d and i n t e n s i t i e s o f p r e f e r e n c e s a r e recorded. A s i g n i f i c a n t s t e p i n allowing t h e consideration of preference i n t e n s i t i e s is i n t r o d u c e d with c a r d i n a l p r e f e r e n c e s . These p r e f e r e n c e s express p r e c i s e l y t h e n o t i o n t h a t a c h o i c e x i s p r e f e r r e d t o a n o t h e r y more t h a n t o a t h i r d z . In t h e c a s e o f choice under u n c e r t a i n t y , t h e s e p r e f e r e n c e s can be shown t o have t h e same mathematical s t r u c t u r e a s von Neumann-Morgenstern u t i l i t i e s , t h e numerical r e p r e s e n t a t i o n s o f p r e f e r e n c e s o v e r l o t t e r i e s : These u t i l i t i e s a r e denoted NM u t i l i t i e s , and a r e f r e q u e n t l y used i n t h e o p e r a t i o n s r e s e a r c h l i t e r a t u r e i n t h e f i e l d o f d e c i s i o n theory s i n c e t h e concept was developed by van kumann and Morgenstern (19); NM u t i l i t i e s a r e a l s o widely used a s a r e p r e s e n t a t i o n of i n d i v i d u a l behavior i n game t h e o r e t i c models, see Fishburn ( 1 3 ) . The main d i f f e r e n c e i n t h e d e f i n i t i o n s of o r d i n a l and c a r d i n a l p r e f e r e n c e s i s t h e i n v a r i a n c e t h e y r e q u i r e from a numerical r e p r e s e n t a t i o n . Cardinal p r e f e r e n c e s r e q u i r e much weaker i n v a r i a n c e than o r d i n a l p r e f e r e n c e s : the r e p r e s e n t a t i o n of c a r d i n a l p r e f e r e n c e by a numerical f u n c t i o n i s i n v a r i a n t under (and only under) p o s i t i v e l i n e a r t r a n s f o r m a t i o n s . For o r d i n a l p r e f e r e n c e s , i n s t e a d , t h e r e p r e s e n t a t i o n must be i n v a r i a n t under any p o s i t i v e t r a n s f o r m a t i o n . 1 The weaker t h e i n v a r i a n c e , t h e c l o s e r a r e p r e f e r e n c e s t o numerical u t i l i t i e s , and numerical u t i l i t i e s have no problem of a g g r e g a t i o n . Therefore one may expect t h a t t h e t a s k of a g g r e g a t i n g i s made e a s i e r w i t h c a r d i n a l r a t h e r than o r d i n a l p r e f e r e n c e s . However, t h i s i s n o t t h e c a s e . It was shown i n C h i c h i l n i s k y [ 4 ] and i n C h i c h i l n i s k y and Heal [ 8 ] t h a t t h e c r u c i a l element i n our a b i l i t y t o a g g r e g a t e p r e f e r e n c e s i s t h e g l o b a l t o p o l o g i c a l s t r u c t u r e of t h e space of p r e f e r e n c e s c o n s i d e r e d . I n o r d e r t o admit a p p r o p r i a t e a g g r e g a t i o n r u l e s , t h e s e spaces must be c o n t r a c t i b l e , i . e . topologically t r i v i a l . However, t h e t o p o l o g i c a l s t r u c t u r e of spaces of p r e f e r e n c e s may be complex even when l e s s invariance i s required. For i n s t a n c e , NM u t i l i t i e s w i t h f i n i t e l o t t e r i e s a r e shown h e r e t o d e f i n e a n o n - c o n t r a c t i b l e s p a c e , i . e . a space w i t h a nont r i v i a l topological s t r u c t u r e (see Section 2). By i n v e s t i g a t i n g t h e g l o b a l topology of spaces of c a r d i n a l p r e f e r e n c e s and of NM u t i l i t i e s , we prove h e r e t h a t w i t h f i n i t e l y many c h o i c e s , t h e r e e x i s t s no continuous anonymous s o c i a l a g g r e g a t i o n r u l e t h a t r e s p e c t s unanimity. Aggregation i s i m p o s s i b l e f o r c a r d i n a l p r e f e r e n c e s and f o r NM u t i l i t i e s . With i n f i n i t e l y many choices we show i n s t e a d t h a t such a g g r e g a t i o n r u l e s do e x i s t . - However, t h e i r e x i s t e n c e i s n o t r o b u s t i n t h e s e n s e t h a t they a r e t h e l i m i t of r u l e s d e f i n e d on s u b s e t s of f i n i t e l y many c h o i c e s , which do n o t r e s p e c t unanimity. The same r e s u l t s apply t o von Neumann-Morgenstern u t i l i t i e s d e f i n e d over i n f i n i t e l y many l o t t e r i e s . A f i n i t e number of i n d i v i d u a l s i s considered throughout t h e paper. The r e s t of t h e paper i s organized a s f o l l o w s : and d e f i n i t i o n s ; Section 2 gives notation S e c t i o n 3 d i s c u s s e s previous l i t e r a t u r e ; and S e c t i o n 4 gives the r e s u l t s . 2. Notation and D e f i n i t i o n s I n t h e c a s e of f i n i t e choices t h e c h o i c e space p o i n t s i n Euclidean space x=(xiI, i.1, ..., n, n a 3 . X i s a f i n i t e s e t of 2 A preference with i n t e n s i t y o r cardinal preference p i s i d e n t i f i e d with a positive vector i n R n , pn) Pi denotes the u t i l i t y value a t t a c h e d to the choice x i . The t o t a l i n d i f f e r - ence p r e f e r e n c e i s thus t h e v e c t o r with a l l c o o r d i n a t e s e q u a l . Our s p a c e of preferences contains t h i s t o t a l indifference preference a s well. The f o l l o w i n g s t e p i s t o n o r m a l i z e u t i l i t y v e c t o r s i n o r d e r t o o b t a i n a unique r e p r e s e n t a t i o n o f e a c h c a r d i n a l p r e f e r e n c e by a v e c t o r i n E u c l i d e a n This normalization is a standard one; s e e , e . g . , space. K a l a i and S c h m e i d l e r i t s economic c o n t e n t i s d i s c u s s e d i n t h e f o l l o w i n g s e c t i o n . [I51 ; mally, i f p = (pl,.. ., ) i s a u t i l i t y vector i n R n , For- p i s n o r m a l i z e d by sub- t r a c t i n g from i t s c o o r d i n a t e s t h e v e c t o r w i t h a l l components i d e n t i c a l t o t h e minimum u t i l i t y v a l u e where m = min { p i ) , i and t h e n d i v i d i n g t h e outcome by i t s maximum component M i f H # 0 , i . e . , where M = max {pi - m). The t o t a l i n d i f f e r e n c e p r e f e r e n c e i s i d e n t i f i e d i t h e r e f o r e w i t h the v e c t o r ( 0 , , 0 ) The f a c t t h a t a l l n o r m a l i z e d p r e f e r - .. . . e n c e s have t h e same minimum and maximum u t i l i t y v a l u e s can be c o n s i d e r e d a 3 weak form of i n t e r p e r s o n a l comparison. I t f o l l o w s t h e r e f o r e t h a t w i t h f i n i t e l y many c h o i c e s t h e s p a c e of c a r d i n a l preferences i s P = Q erences, U { o ) , where Q i s t h e s u b s p a c e of non-zero c a r d i n a l p r e f - 2 Q = {~ER~': pi ~n i=l - 1, p j 0 and pk = 1 f o r s o m e k , j ~ ( 1 ,..., n } } , r and {O) d e n o t e s t h e t o t a l i n d i f f e r e n c e p r e f e r e n c e . I n o r d e r t o d e f i n e con- t i n u i t y of t h e s o c i a l c h o i c e r u l e , P i s given t h e n a t u r a l topology i t i n h e r n i t s from R . The s p a c e P h a s two connected components, Q and {O) W e s h a l l now d e f i n e t h e s p a c e of c a r d i n a l p r e f e r e n c e s P w .4 f o r t h e c a s e of i n f i n i t e l y many c h o i c e s . Assume now t h a t t h e c h o i c e space X i s N , p r e f e r e n c e p i s assumed t o be a non-negative t h e s e t of i n t e g e r s . A sequence of numbers, i . e . , a non-negative r e a l v a l u e d f u n c t i o n on N . S i n c e we a r e concerned w i t h bounded sequences, w i t h o u t l o s s of g e n e r a l i t y , we may assume t h a t &P ( n >p(n) < f o r some f i n i t e measure p o r N given by a d e n s i t y f u n c t i o n p(n) w The s p a c e of p r e f e r e n c e s P . i s t h e r e f o r e s t r i c t l y contained i n the space of a l l bounded sequences, and t h i s i s i n t u r n a s u b s e t ( t h e p o s i t i v e cone) of a weighted P 1 s p a c e . 5 00 Note t h a t we could have embedded P i s a dense subspace of f 1 t h e s p a c e of . However, t h e s p a c e i=1,2.. w i t h t h e ( f i n i t e ) weight p ( n ) . T h e r e f o r e , i f one a l l bounded sequences w i t h t h e sup norm, 1 x fa into fa, Hw = sup lxnl . d e f i n e s an a g g r e g a t i o n map @ f o r P l y one has a u t o m a t i c a l l y d e f i n e d an a g g r e g a t i o n map f o r f a , given by t h e r e s t r i c t i o n of @ on f w c o n s i d e r e d a s a subspace of 2! 1' The topology induced by P 1 i s d i f f e r e n t t h a n t h e sup norm on P a , b u t s i n c e our - aim i s t o prove an e x i s t e n c e theorem, f o r some a d e q u a t e t o p o l o g y , t h i s p r o c e d u r e seems adequate. w I n any c a s e , P i s a s t r i c t s u b s e t of fa, a s w e l l a s of P I , Therefore, neither f w and i s s i g n i f i c a n t l y s m a l l e r t h a n e i t h e r f a o r f l . f 1 coincide with p 00 and t h u s t h e c h o i c e of t o p o l o g y i s b e s t made on t h e b a s i s of m a t h e m a t i c a l adequacy. spacesf nor Theorem 2 shows t h a t f 1 i s a n a d e q u a t e s p a c e ; o r more g e n e r a l l y f economic l i t e r a t u r e ; P the ( w i t h 15 p $00) have been u s e d p r e v i o u s l y i n t h e see e.g. Chichilnisky [ 6 ] . A s i n t h e c a s e of f i n i t e l y many c h o i c e s , we n o r m a l i z e t h e v e c t o r p i n An e q u i v a l e n c e o r d e r t o o b t a i n a u n i q u e r e p r e s e n t a t i o n of c a r d i n a l p r e f e r e n c e s . relation a E fl, 'L B E i s d e f i n e d by p R+. 1 'L p2 i f and o n l y i f = a + Bp 2 , A p r e f e r e n c e i s a n e q u i v a l e n c e c l a s s of p o s i t i v e v e c t o r s p under t h e r e l a t i o n 'L. A s p a c e which i s i n a one t o o n e c o r r e s p o n d e n c e w i t h t h e s p a c e of p r e f e r e n c e s i s o b t a i n e d by c o n s i d e r i n g a l l v e c t o r s w i t h c o o r d i n a t e s s m a l l e r t h a n 1, w i t h a t l e a s t one c o o r d i n a t e z e r o , and w i t h t h e f i r s t nonz e r o c o o r d i n a t e ( i f i t e x i s t s ) e q u a l t o 1. 00 00 s p a c e of c a r d i n a l p r e f e r e n c e s i s P = Q f i $. 1; f W O } , where' Q~ = { f = 0 and f . + 1 = 1 f o r some j j J and i s a c l o s e d s u b s e t of a Banach s p a c e . connected components. T h e r e f o r e w i t h many c h o i c e s t h e 1. 00 P E f + : f o r a l l i, i n h e r i t s t h e t o p o l o g y of f 1 00 As P, P c o n s i s t s of e x a c t l y two Assume now t h e r e a r e k a g e n t s , k 2 2. 1 o f c a r d i n a l p r e f e r e n c e s i s a v e c t o r {p , of p w i t h i t s e l f k-times 1 is a vector {P , .. ., p repectively. m k ~E (P ) k With f i n i t e c h o i c e s a p r o f i l e . . . , pk )EPk , the cartesian product With i n f i n i t e c h o i c e s a p r o f i l e . A r u l e I$ i s s a i d t o r e s p e c t u n a n i m i t y when @ ( p , . . . , p) = p; i.e. , i f a l l v o t e r s have i d e n t i c a l p r e f e r e n c e s o v e r dl c h o i c e s , s o does t h e s o c i a l preference. 6 A r u l e I$ i s anonymous when t h e outcome i s i n d e p e n d e n t o f t h e o r d e r o f the voters, i . e . , where i s any p e r m u t a t i o n o f t h e set { l , ..., k) . Continuity of a r u l e is d e f i n e d w i t h r e s p e c t t o the u s u a l product topologies of t h e s p a c e s of p r e f e r e n c e s nk k a s s u b s e t s of R o r (el) i n t h e f i n i t e and i n f i n i t e choice case, respectively . We now d i s c u s s c e r t a i n b a s i c t o p o l o g i c a l c o n c e p t s u s e d i n t h e f o l l o w i n g . A topological space X i s c o n t r a c t i b l e i f t h e r e e x i s t s a continuous map f : X x [ 0 , some x EX. 0 11 + X such t h a t f ( x , 0) = x Yx i n X , and f ( x , 1) = x Intuitively, 0' for X i s c o n t r a c t i b l e i f i t can be deformed c o n t i n u o u s l y t h r o u g h i t s e l f , i n t o one o f i t s p o i n t s , xO. convex s e t a r e c o n t r a c t i b l e . C l e a r l y e u c l i d e a n s p a c e and any I n p a r t i c u l a r , the space of continuous r e a l valued u t i l i t y functions is a c o n t r a c t i b l e space. Topologically speaking, t h e s e a r e a l l t r i v i a l s p a c e s , s i n c e they a r e t o p o l o g i c a l l y e q u i v a l e n t t o ( i . e . , c o n t i n u o u s l y deformable i n t o ) p o i n t s . tible. A hollow s p h e r e i n R'I i s not contrac- As w e s h a l l prove below, n e i t h e r t h e non t r i v a l c o n n e c t e d component t h e s p a c e of c a r d i n a l p r e f e r e n c e s Q , n o r t h a t of von Neumann-Morgenstern are contractible. utilities, T h i s proves t o be i m p o r t a n t f o r t h e a g g r e g a t i o n r e s u l t s of t h i s paper. R e l a t i o n s h i p w i t h P r e v i o u s Work B e f o r e p r o v i n g t h e r e s u l t s , i t may be u s e f u l t o d i s c u s s t h e r e l a t i o n s h i p o f t h e s p a c e s of p r e f e r e n c e s s t u d i e d h e r e w i t h e a r l i e r c o n c e p t s of c a r d i n a l p r e f e r e n c e s used i n t h e l i t e r a t u r e , The s p a c e of and a l s o e a r l i e r r e s u l t s i n t h i s a r e a . non z e r o c a r d i n a l p r e f e r e n c e s Q c o r r e s p o n d s t o t h e s p a c e of c a r d i n a l u t i l i t i e s as s t u d i e d f o r i n s t a n c e by K a l a i and S c h m e i d l e r i1.51: two v e c t o r s and p 2 d e f i n e t h e same c a r d i n a l p r e f e r e n c e when t h e r e e x i s t a p o s i t i v e number f3 and a p o s i t i v e v e c t o r a s u c h t h a t I t i s e a s y t o check t h a t o u r n o r m a l i z a t i o n o f t h e p r e v i o u s s e c t i o n i d e n t i f i e s e a c h v e c t o r i n Q w i t h a n e q u i v a l e n c e c l a s s of v e c t o r s under t h e equivalence r e l a t i o n 2 p l z a + b p , f o r all a > 0, b > 0 . C o n s i d e r now t h e c a s e o f c h o i c e under u n c e r t a i n t y . I n t h i s case the s p a c e of von Neumann-Morgenstern u t i l i t i e s , i . e . , n u m e r i c a l r e p r e s e n t a t i o n of p r e f e r e n c e s o v e r l o t t e r i e s , c o r r e s p o n d s p r e c i s e l y t o o u r f o r m a l d e f i n i t i o n of the spaces of cardinal preferences. i 1 5 j and [ 1 9 ] . For f u r t h e r d i s c u s s i o n s e e , e . g . , The s p e c i f i c a t i o n of P g i v e n h e r e i s a l s o r e l a t e d t o one of t h e forms of r e l a x a t i o n of t h e u s u a l o r d i n a l i t y and c o m p a r a b i l i t y a s s u m p t i o n s d i s c u s s e d i n dtAspremont and Gevers. non-comparability T h e i r c o n d i t i o n CN of c a r d i n a l i t y and requires that i f u 1 and u a r e two u t i l i t i e s , t h e n t h e y 2 d e f i n e t h e same p r e f e r e n c e whenever ..,R where j = 1,. i s t h e index f o r the v o t e r , x d e n o t e s a c h o i c e , and I n our framework CN means t h a t f o r where { a * ) and { f i e ) a r e p o s i t i v e real numbers. J J 1 2 e a c h v o t e r t h e v e c t o r p r e p r e s e n t s t h e same p r e f e r e n c e as a n o t h e r p when t h e r e e x i s t s a v e c t o r a and a p o s i t i v e number B s u c h t h a t p 1 = a + Bp 2 . This is p r e c i s e l y t h e c a r d i n a l i t y c o n d i t i o n d i s c u s s e d above: Let and p 2 s a t i s f y p1 = a + Op 2 . Then t h e y y i e l d t h e same e l e m e n t i n P , s i n c e f o r any p = ( p l , . . . , p n ) , and any j = l , . . . , n a + Max [ a 8p + j - min ( a O(pi) - i + hi) min ( a + 3pR1 R C o n v e r s e l y , i f two u t i l i t y v e c t o r s p 1 and p 2 i n R~ y i e l d t h e same e l e m e n t i n t h e s p a c e of i - p r e f e r e n c e s P , then I 1 Max (pi i - 1 min ( p e ) ) R - 1 2 Max (pi i - min R 2 (pi)) which i m p l i e s t h a t (min (p:)) - min ( P j 2 Max ( p 2 - m i n ( p . ) ) i J i I Max ( p i and 6 = I m x (pi i - A. -, L Max (pi i min ( p i ) J ? , - L j (P.)) J T h e r e f o r e s o c i a l c h o i c e r u l e s t h a t a r e i n v a r i a n t under t h e n o r m a l i z a t i o n o f P c o r r e s p o n d p r e c i s e l y t o t h o s e s a t i s f y i n g c o n d i t i o n CN. S e v e r a l a u t h o r s t h a t s t u d i e d t h e problems i n v o l v e d i n a g g r e g a t i n g c a r d i n a l p r e f e r e n c e s , e . g. , Sen [16 ] and K a l a i and Schmeidler [15 1 . It h a s been shown [ 1 5 ] t h a t Arrow-like p a r a d o x e s nay e x i s t even w i t h c a r d i n a l p r e f e r e n c e s , p r o v i d e d Arrow-like c o n d i t i o n s a r e r e q u i r e d of t h e a g g r e g a t i o n pro- cedure : t h e s e a r e t h e somewhat c o n t r o v e r s i a l independence of i r r e l e v a n t a l t e r n a t i v e s , P a r e t o and non d i c t a t o r s h i p . Such c o n d i t i o n s may be t o o s t r o n g . Also, w h i l e making t h e problem amenable t o a c o m b i n a t o r i a l a n a l y s i s , s u c h c o n d i t i o n s t e n d t o l e a v e o u t i t s i n t r i n s i c geometry. Here, i n s t e a d , o t h e r conditions of t h e a g g r e g a t i o n r u l e a r e s t u d i e d : c o n t i n u i t y , anonymity and r e s p e c t of unanimity. These c o n d i t i o n s admit a ready g e o m e t r i c a l i n t e r p r e t a t i o n , and f u r t h e r m o r e h e l p t o e x h i b i t t h e t o p o l o g i c a l n a t u r e of t h e problem a t hand. The f o l l o w i n g r e s u l t e s t a b l i s h e s t h e i m p o s s i b i l i t y of a g g r e g a t i o n w i t h f i n i t e l y many c h o i c e s . The s p a c e of p r e f e r e n c e s i s t h e r e f o r e P = Q u {O}, as d e f i n e d above. Theorem 1 There e x i s t s no c o n t i n u o u s a g g r e q a t i o n r u l e f o r c a r d i n a l p r e f e r e n c e s where i n d i v i d u a l and s o c i a l p r e f e r e n c e s may b e i n d i f f e r e n t among a l l c h o i c e s . Proof: k A n a g g r e g a t i o n r u l e f o r c a r d i n a l p r e f e r e n c e s i s a map @ : P + P. Now, as d i s c u s s e d i n s e c t i o n 2 , t h e s p a c e P h a s e x a c t l y two connected comp o n e n t s , Q and {o} ( f i g u r e 1 below i l l u s t r a t e s t h e c a s e of t h r e e c h o i c e s ) . T h e r e f o r e t h e p r o d u c t s p a c e pk h a s e x a c t l y 2k c o n n e c t e d components. The map $ i s t h e r e f o r e a c o n t i n u o u s f u n c t i o n from a t o p o l o g i c a l s p a c e with 2 k components i n t o a n o t h e r w i t h 2 components. I t f o l l o w s from c o n t i n u - i t y o f $ t h a t e a c h of t h e c o n n e c t e d components o f pk must be mapped by @ i n t o is i n d i c a t e d a s f i e union of the p o i n t ( 0 )with +-he s e t drawn with a heavy l i n e . The non zero connected component of P I in indicated with t h e heavy l i n e ) is cn a one t o cne bicontinuous correspondsnce with the boundary aS of t h e simplex S i n Ft3, and is t h e r e f o r e not c o n t r a c t i b l e in R ~ . ';he space of preferences P w i t h t h r e e choices one c o n n e c t e d component o f P . n e c t e d component o f P k Consider i n p a r t i c u l a r Q k .p , which i s t h e con- c o n s i s t i n g o f a l l non z e r o c a r d i n a l p r e f e r e n c e s . e i t h e r $(Q ) C Q, o r else $(Q~) C {O}. o f unanimity p , . . k Then However, by t h e c o n d i t i o n of r e s p e c t = p for a l l p in k Q, i m p l y i n g t h a t $(Q ) $ {0}, i.e., $ ( Q ~ )C Q. T h e r e f o r e , t h e axioms o f c o n t i n u i t y and t h a t of r e s p e c t of unanimity t a k e n t o g e t h e r r u l e o u t t h e p o s s i b i l i t y t h a t a p r o f i l e w i t h all p r e f e r e n c e s d i f f e r e n t from t h e z e r o v e c t o r may b e mapped i n t o t h e z e r o outcome v e c t o r . fore , There- a c o n t i n u o u s r u l e f o r c a r d i n a l p r e f e r e n c e s which r e s p e c t s unanimity w i l l o n l y a s s i g n t h e t o t a l i n d i f f e r e n c e t o a set of v o t e r s i f a t l e a s t one o f them i s t o t a l l y i n d i f f e r e n t among a l l c h o i c e s . $ i n d u c e s t h e r e f o r e a c o n t i n u o u s map 7 7 : Q k anonymous and r e s p e c t s unanimity. S i n c e Q and Q can now k + Q, which i s a l s o c o n t i n u o u s , a r e b o t h connected s p a c e s , w e use t h e r e s u l t s i n [ 7 ] . These results e s t a b l i s h t h a t t h e e x i s t e n c e o f such a map $ depends on c e r t a i n t o p o l o g i c a l i n v a r i a n t s o f t h e s p a c e Q. The n e x t s t e p of t h e proof c o n s i s t s t h e r e f o r e o f i n v e s t i g a t i n g t h e topology of t h e s p a c e of non z e r o c a r d i n a l p r e f e r e n c e s , f o r any f i n i t e number of c h o i c e s n Consider t h e subspace R j -th coordinate p j = 0. one c o r r e s p o n d e n c e w i t h T j' , n c i=l j The set T i s a n n-2 d i m e n s i o n a l s i m p l e x . m P + n-1 o f Rn+, .C J 3. c o n s i s t i n g of a l l v e c t o r s p w i t h t h e R ~ - ' d e f i n e d by j l o w , t h e set Q = Q r/ Rn-I j by t h e map m d e f i n e d by s i n c e p # !0) 2 f o r a l l p i n Q. j i s i n a one-to- S i n c e t h e map m i s c o n t i n u o u s , and s o i s i t s i n v e r s e , i t f o l l o w s t h a t t h e s p a c e Q i s homeomorphic t o t h e s i m p l e x T j . . .. fl Now, f o r any j , L E { l , ,n} t h e i n t e r s e c t i o n Q . r ) Q = T . TQ. J L J n and Q j n Q Q = T . n T L f o r all j and L , i t f o l l o w s t h a t Since Q = Q J j =1 j ' () Qj j =1 Now, i s homeomorphic t o (31 T j . T h e r e f o r e Q i s homeomorphic t o j =1 0 T j j =l ' 0 T2 i s , i n t u r n , homeomorphic t o t h e boundary of an n-dimensional s i m p l e x i n R", i.e . , an n-2 dimensional sphere. I t f o l l o w s t h a t Q i s homeo- morphic t o an n-2 d i m e n s i o n a l s p h e r e a n d , t h e r e f o r e , i n p a r t i c u l a r , Q i s s t contractible. W e c a n now a p p l y t h e r e s u l t s of [ 7 ] , which e s t a b l i s h t h a t f o r any ( p a r a ) f i n i t e CW complex X , t h e c o n t r a c t i b i l i t y o f X i s a n e c e s s a r y c o n d i t i o n f o r t h e e x i s t e n c e of a c o n t i n u o u s anonymous r u l e I$ : X > 2. unanimity, f o r a l l k - k + X , which r e s p e c t s S i n c e Q i s a f i n i t e CW complex and i s n o t con- t r a c t i b l e , t h i s completes t h e p r o o f . S i n c e a s d i s c u s s e d above t h e s p a c e o f NM u t i l i t i e s can be i d e n t i f i e d w i t h P i f t h e r e a r e f i n i t e l y many c h o i c e s i n e a c h s t a t e , we have t h e r e f o r e o b t a i n e d from theorem 1: Corollary 1 The s p a c e o f von-Neumann Morgenstern u t i l i t i e s w i t h f i n i t e l y many l o t t e r i e s is not contractible. and Corollarv 2 With f i n i t e l y many l o t t e r i e s t h e r e e x i s t no c o n t i n u o u s anonymous a g g r e g a t i o n r u l e f o r von Neumann-Morqenstern u t i l i t i e s which r e s p e c t s u n a n i m i t y . This i n c l u d e s c a s e s where i n d i v i d u a l and s o c i a l u t i l i t i e s may be i n d i f f e r e n t among a l l l o t t e r i e s . Remark : Even though o u r f r a n e w o r k and c a c d i t i o n s on the a g g r e g a t i o n r u l e a r e r a t h e r d i f f e r e n t from t h o s e o f K a l a i and S c h m e i d l e r , our i m p o s s i b i l i t y r e s u l t is consistent with t h e i r s i n c a s e s of f i n i t e l y many c h o i c e s . However, t h i s i s n o t t h e c a s e f o r i n f i n i t e l y many c h o i c e s . Instead, we obtain i n the next s e c t i o n a p o s s i b i l i t y of aggregation r e s u l t f o r h i s l a t t e r case. T h i s c o n t r a s t s w i t h t h e r e s u l t o f K a l a i and S c h m e i d l e r b e c a u s e t h e i r impossi- b i l i t y r e s u l t i s v a l i d a l s o w i t h i n f i n i t e l y many c h o i c e s . T h i s i s because t h e y r e q u i r e t h e axiom o f independence o f i r r e l e v a n t a l t e r n a t i v e s , which e f f e c t i v e l y r e d u c e s t h e problem o f a g g r e g a t i o n w i t h i n f i n i t e l y many c h o i c e s t o one of a g g r e g a t i o n w i t h f i n i t e l y many c h o i c e s . The d i f f e r e n c e between t h e two r e s u l t s a r i s e s from t h e f a c t t h a t d i f f e r e n t sets of axioms are r e q u i r e d : we do n o t r e q u i r e independence of i r r e l e v a n t a l t e r n a t i v e s , b u t r e q u i r e c o n t i n u i t y i n s t e a d , and we do n o t r e q u i r e t h e P a r e t o c o n d i t i o n , b u t r a t h e r a (weaker) c o n d i t i o n of r e s p e c t o f u n a n i m i t y . The r e s u l t s g i v e n below a l s o show t h a t t h e a g g r e g a t i o n w i t h i n f i n i t e l y many c h o i c e s i s n o t r o b u s t a s a l i m i t i n g p r o c e s s of a g g r e g a t i o n on c e r t a i n f i n i t e s u b s e t s of c h o i c e s . W e now t u r n t o t h e c a s e of i n f i n i t e l y many c h o i c e s . 00 cardinal preferences i s therefore P of i n d i v i d u a l s , k . As before , Our s p a c e of t h e r e a r e a f i n i t e number > 2. Theorem 2 With i n f i n i t e l y many c h o i c e s , t h e r e e x i s t s a c o n t i n u o u s a q q r e q a t i o n a k r u l e 4 : (P ) ity + pW f o r c a r d i n a l p r e f e r e n c e s r e s p e c t i n g unanimity and anonym- g i v e n by a c o n t i n u o u s d e f o r m a t i o n o f a Bergsonian r u l e addition rule i.e., a convex i t r a r i l y l a r g e f i n i t e s e t s of c h o i c e s and which do n o t r e s p e c t u n a n i m i t y ; i n p a r t i c u l a r they a r e not Pareto. Proof: A s i n theorem 1, we may c o n s i d e r a c o n t i n u o u s a g g r e g a t i o n r u l e - a s s i g n i n g t o each p r o f i l e of k ( n o n - t r i v i a l ) 00 of P , where preferences i n P 00 , an element 00 P 00 Q = Q ~ ~ { o and ) , = + Pi EL^: -< 1 f o r a l l i , p j = 0 a n d pjtl = 1 f o r some j } . 00 A s i n t h e f i n i t e d i m e n s i o n a l c a s e one can show t h a t Q i s i n a o n e t t o - one b i c o n t i n u o u s c o r r e s p o n d e n c e w i t h t h e boundary o f a d i s k i n 2 an i n f i n i t e d i m e n s i o n a l s p h e r e i n k Now, by c o r o l l a r y 5 . 1 , 00 Kuiper [ 1 4 ] t h e s p a c e Q tractible. are 1' i . e . , with 1' p . 109 of Bessaga and P e l c z y n s k i i 2 ] and i s homeomorphic t o 2 1' and i n p a r t i c u l a r , i s con- This i s i n c o n t r a s t t o t h e f i n i t e d i m e n s i o n a l c a s e , where s p h e r e s not c o n t r a c t i b l e and i n d e e d n s homeomorphic t o e u c l i d e a n s p a c e . be t h e homeomorphism, H : Q- + Z1. S i n c e convex a d d i t i o n C i n 2 1 Let H exists and i t s a t i s f i e s anonymity, c o n t i n u i t y and r e s p e c t of u n a n i m i t y , t h e compo- -1 k s i t i o n map $ = Ho CoH d e f i n e d by cok i s a c o n t i n u o u s f u n c t i o n $ : (Q ) + Q~ s a t i s f y i n g anonymity and r e s p e c t of unanimity. S i n c e we can r e p e a t t h i s p r o c e d u r e f o r e a c h c o n n e c t e d component 00k of (P ) , t h i s p r o v e s e x i s t e n c e . convex a d d i t i o n r u l e C , i . e . , C l e a r l y t h e map 4 i s a d e f o r m a t i o n o f t h e a d e f o r m a t i o n of a B e r g s o n i a n r u l e . C o n s i d e r now t h e s p a c e of t r u n c a t e d s e q u e n c e s T C Q , T - {{p) : ?I0 w i t h pN = O f o r Z.I,M T h i s s p a c e i s dense i n 2 1 0 ). w i t h a ( f i n i t e ) measure. Consider the pointwise convergence t o p o l o g y o f t h e s p a c e F of c o n t i n u o u s f u n c t i o n s F = f : (L1) k + Z1). 8 The sequence of r e s t r i c t i o n maps f i n i t e dimensional l i n e a r subspaces L d e f i n e d by t h e r e s t r i c t i o n s of d sequence of i n t e g e r s { d l , converges t o 4 to whose dimensions d e f i n e an unbounded 4. Note t h a t when r e s t r i c t e d t o any f i n i t e s u b s p a c e of c h o i c e s ( i . e . , when r e s t r i c t e d t o v e c t o r s o f f i n i t e l e n g t h ) t h e map @d remains anonymous. I t f o l l o w s by theorem 1 t h a t unanimity on s u c h s u b s p a c e ; i n p a r t i c u l a r , i t i s n o t P a r e t o . sequence of maps converges t o t h e map 4, 4d cannot r e s p e c t Since the t h i s completes t h e p r o o f . From theorem 2 we o b t a i n immediately t h e a n a l o g u e t o c o r o l l a r i e s 1 and 2 f o r von Neumann-Morgenstern u t i l i t i e s : Corollarv 3 With i n f i n i t e l y many l o t t e r i e s , t h e s p a c e o f von Neumann-Morgenstern m utilities P is contractible. and Corollarv 4 9 a q g r e q a t i o n r u l e f o r von Neumann-Morqenstern u t i l i t v f u n c t i o n s which r e q n e c t s unanimity. However, t h i s r u l e i s n o t r o b u s t s i n c e it i s t h e L i m i t of non-Pareto r u l e s on a r b i t r a r i l y l a r g e sets of l o t t e r i e s . l ~ h eproblem of a g g r e g a t i o n of o r d i n a l p r e f e r e n c e s i s s i g n i f i c a n t l y d i f f e r e n t from t h a t of a g g r e g a t i n g u t i l i t y f u n c t i o n s ( e . g . , t h e c l a s s i c a l B e r g s o n i a n s o c i a l w e l f a r e f u n c t i o n ) because t h e a g g r e g a t i o n of o r d i n a l p r e f e r e n c e s must be i n d e p e n d e n t of t h e c h o i c e o f t h e i r u t i l i t y r e p r e s e n t a t i o n . For i n s t a n c e , i f u i s a u t i l i t y f u n c t i o n and F i s a s t r i c t l y i n c r e a s i n g numeri c a l . f u n c t i o n , t h e o r d i n a l p r e f e r e n c e a s s o c i a t e d w i t h t h e u t i l i t y u must be t h e same a s t h a t a s s o c i a t e d w i t h t h e f u n c t i o n F o u. T h e r e f o r e , a r u l e f o r aggregating u t i l i t i e s w i l l o n l y induce a r u l e f o r aggregating o r d i n a l p r e f e r e n c e s i f i t i s i n v a r i a n t under any such i n c r e a s i n g t r a n s f o r m a t i o n of u t i l i t i e s . T h i s i s i n d e e d a r a t h e r s t r o n g c o n d i t i o n , and s e v e r a l p o s s i b l e r e l a x a t i o n s have been s t u d i e d , f o r i n s t a n c e , by Sen [16] [ 1 7 ] , Hammond [ 1 3 ] , K a l a i and Schmeidler [ 1 5 ] and more r e c e n t l y by dfAspremont and Gevers [ l o ] . Sen [ 1 7 ] concentrates on t h e r e l a x a t i o n of t h e a s s u m p t i o n of no i n t e r p e r s o n a l comparisons. dfAspremont and Gevers d i s c u s s and c h a r a c t e r i z e a wide combination of a s s u m p t i o n s t h a t r e l a x ' b o t h t h e i n t e r p e r s o n a l comparison and t h e o r d i n a l i t y a s s u m p t i o n s . Our framework h e r e i s most c l o s e l y r e l a t e d t o axiom (CN) o f dfAspremont and G e v e r s , which assumes t h a t i n d i v i d u a l u t i l i t y f u n c t i o n s a r e c a r d i n a l and non comparable, and t o t h e c a r d i n a l i t y a s s u m p t i o n s of Sen [ 1 6 ] and of K a l a i and S c h m e i d l e r . Respect o f u n a n i m i t y i s s t r i c t l y weaker t h a n t h e P a r e t o c o n d i t i o n . I t r e q u i r e s t h a t i f a l l i n d i v i d u a l s a g r e e unanimously o v e r a l l c h o i c e s , s o does t h e a g g r e g a t e . T h i s c o n d i t i o n does n o t imply t h a t i f one c h o i c e x i s p r e f e r r e d t o a n o t h e r y by a l l i n d i v i d u a l s , t h e n t h e a g g r e g a t e p r e f e r s x t o y . T h i s n o r m a l i z a t i o n h a s i n p a r t i c u l a r t h e e f f e c t t h a t t h e sum t o t a l of i n t e n s i t i e s o v e r c h o i c e s i s u n i f o r m l y bounded o v e r a g e n t s ; t h i s was a sugg e s t i o n of L . Gevers. 4 A c o n n e c t e d component o f a t o p o l o g i c a l s p a c e Y i s a maximum connected subspace of Y . A s p a c e X i s -c o n n e c t e d i f i t c a n n o t be decomposed as a union X = XI U X 2 , whereX # $, X2 # $, and XI and X2 a r e b o t h open and c l o s e d s e t s . 1 T h i s e x t e n d s t h e n o t i o n t h a t any p o i n t i n X can be j o i n e d t o a n o t h e r i n X by a path contained i n X. 5(!L1,u) i s t h e Banach s p a c e of i n f i n i t e s e q u e n c e s of r e a l numbers . { ~ n I n = l , 2 , . . such t h a t co see [ l l ] . Note t h a t t h i s c o n d i t i o n i s b i n d i n g o n l y when a l l v o t e r s have i d e n t i c a l p r e f e r e n c e s . I t i s t h e r e f o r e a s t r i c t l y weaker c o n d i t i o n t h a n P a r e t o , s i n c e a r u l e $ s a t i s f i e s t h e P a r e t o c o n d i t i o n i f whenever a c h o i c e x E X i s preferred t o another y E X f o r a l l preferences . , p k , t h e n $I($,. ,pk) a l s o p r e f e r s x t o y. . .. ' I n a d d i t i o n t o v i o l a t i n g our axioms, r u l e s t h a t a s s i g n z e r o outcomes t o non z e r o v e c t o r s a r e c l e a r l y u n d e s i r a b l e f o r o t h e r r e a s o n s : It i s e a s y t o check t h a t i f $ i s a c o n t i n u o u s map from ( R ~ i n) t ~ o Rn t h a t maps a p r o f i l e of t h r e e v o t e r s w i t h non z e r o v e c t o r s i n t o t h e t r i v i a l ( z e r o ) s o c i a l p r e f e r e n c e , i t w i l l n e c e s s a r i l y map t h e e q u i v a l e n t of some Condorcet t r i p l e i n t o t h e t r i v i a l outcome ( 0 , ...,0 ) . The 'Condorcet t r i p l e ' we a r e r e f e r r i n g t o i s o b t a i n e d by choosing t h r e e p a i n t s (xyz) i n Rn, so t h a t t h e t h r e e v e c t o r s g i v i n g t h e v o t e r s ' p r e f e r e n c e s r a n k t h e s e c h o i c e s i n t h e o r d e r s (xyz) (zxy) and Such a g g r e g a t i o n would g i v e a t r i v i a l ( t o t a l i n d i f f e r e n c e ) (yzx) r e s p e c t i v e l y . s o l u t i o n t o t h e Condorcet t r i p l e , which i s c l e a r l y n o t an a c c e p t a b l e s o l u t i o n . - 8 ~ h ep o i n t w i s e convergence topology rule see [ I l l . - r on F i s d e f i n e d by t h e c o ~ e r g e n c e References Arrow, I., Social Choice and Individual Values, Cowles Foundation for Research in Econmics, Monograph 12, Yale University, New Haven, 1963 (2nd edition) . Bessaga, C., and Pelczynski, A., 1 Topology, Polska Akademia Nauk, Instytut Matema Tyczny, Warszawa, 1975. Black, D., "On the Rationale of Group Decision-Making," Journal of Political Economy, 1958. Chichilnisky, G., "Social Choice and the Topology of Spaces of Preferences," Advances in Mathematics, 1980. Chichilnisky, G., "Continuous Representation of Preferences," Review of Economic Studies, 1980. Chichilnisky, G., "Existence and Characterization of Optimal Growth Paths in Models with Non-Convexities in Utilities and Technologies", Review of Economic Studies, 1981. Chichilnisky, G., "Structural Instability of Decisive Majority Rules", Journal of Mathematical Economics. 1981. Chichilnisky, G., and Heal, G., "Necessary and Sufficient Conditions for the Existence of Social Choice Rules," The Economic Workshop, Columbia University, August, 1979, Journal of Economic Theory, 1983. Chichilnisky, G., "The Topological Equivalence of the Pareto Condition and the Existence of a Dictator," Journal of Mathematical Economics, 1982. Chichilnisky, G., "Social Aggregation Rules and Continuity," Quarterly Journal of Economics, February, 1981. dlAspremont,C., and Gevers, L., "Equity and the Informational Basis of Collective Choice", Review of Economic Studies, 1977. Dunford, M. and Schwarz, J., Linear Operators, Interscience, New York, 1963. Fishburn, P. C., Utility Theory for Decision Makinq, publications in Operations Research No. 18, Wiley, New York, 1970. Hammond, P. J., "Equity, Arrow's Conditions and Rawls' Difference Principle", Econometrica, 1976. Kuiper, N. H., Varieties Hilbertiennes, Aspects Geometriques, Seminaire de Mathematiques Superieures, Les Presses de llUniversitede Montreal, 1971. Kalai, E., and Schmeidler, D., "Aggregation procedure for Cardinal Preferences", Econometrica, 1977. 17. Sen, A . K . , C o l l e c t i v e Choice and S o c i a l Welfare, O l i v e r and Boyd, Edinburgh, 19 18. Sen, A . K . , 19. Spanier, E . , 1966. 20. von Neumann, J . , and Morgenstern, D . , Behavior, Wiley, New York, 1967. . " I n t e r p e r s o n a l Comparisons of Welfare", mimeo, 1975. Algebraic Topology, McGraw H i l l s e r i e s i n Higher Mathematics, The Theory of Games and Economic
© Copyright 2026 Paperzz