Scale-free networks Péter Kómár Statistical physics seminar 07/10/2008 Elements of graph theory I. A graph consists: vertices edges Edges can be: directed/undirected weighted/non-weighted self loops Non-regular graph multiple edges 2 Elements of graph theory II. Degree of a vertex: the number of edges going in and/or out Diameter of a graph: distance between the farthest vertices Density of a graph: sparse dense 3 Networks around us I. Internet: routers cables WWW: HTML pages hyperlinks Social networks: people social relationship 4 Networks around us II. Transportation systems: stations / routes routes / stations Nervous system: neurons axons and dendrites Biochemical pathways: chemical substances reactions 5 Real networks Properties: Self-organized structure Evolution in time (growing and varying) Large number of vertices Moderate density Relatively small diameter (Small World phenomenon) Highly centralized subnetworks 6 Random networks Measuring real networks: Relevant state-parameters Evolution in time Creating models: Analytical formulas Growing phenomenon Checking: ‘Raising’ random networks Measuring 7 Scale-free property 1999. A.-L. Barabási, R. Albert measured the vertex degree distribution P k k → power-law tail: movie actors: actors 2.3 0.1 www 2.1 0.1 www: US power grid: power 4 actors www 8 A.-L. Barabási, R. Albert (1999) ‘Emergence of Scaling in Random Networks’, Science Vol. 286 Small diameter 2000. A.-L. Barabási, R. Albert measured the diameter of a HTML graph 325 729 documents, 1 469 680 links found logarithmic dependence: 0.35 2.06 log N ‘small world’ 9 A.-L. Barabási, R. Albert, H. Jeong (2000) ‘Scale-free characteristics of random networks: the topology of the wold-wide web’, Physica A, Vol. 281 p. 69-77 Erdős-Rényi graph (ER) (1960. P. Erdős, A. Rényi) Construction: N vertices probability of each edge: pER Properties: pER ≥ 1/N → → Asympt. connected degree distribution: Poisson (short tail) not centralized small diameter pER = 6∙10-4 N=104 10-3 1.5∙10-3 10 A.-L. Barabási, R. Albert, H. Jeong (1999) ‘Mean-field theory for scale-free random networks’, Physica A, Vol. 272 p.173-187 ER graph example 11 Small World graph (WS) (1998. D.J. Watts, S.H. Strogatz) Construction: N vertices in sequence 1st and 2nd neighbor edges rewiring probability: pWS Properties: pWS = 0 → clustered, N 0 < pWS < 0.01 → clustered → small-world propery pWS = 1 → not clustered, ln N 12 A.-L. Barabási, R. Albert, H. Jeong (1999) ‘Mean-field theory for scale-free random networks’, Physica A, Vol. 272 p.173-187 WS graph example 13 ER graph - WS graph WS ER 14 Barabási-Albert graph (BA) New aspects: Continuous growing Preferential attachment m0 = 3 m =2 Construction: m0 initial vertices in every step: +1 vertex with m edges P(edge to vertex i) ~ degree of i 15 A.-L. Barabási, R. Albert, H. Jeong (1999) ‘Mean-field theory for scale-free random networks’, Physica A, Vol. 272 p.173-187 Barabási-Albert graph II. Properties: Power-law distribution of degrees: Pk k 2.9 0.1 Stationary scale-free state Very high clustering Small diameter 5 7 3 1 = m0 = m N = 300 000 16 A.-L. Barabási, R. Albert, H. Jeong (1999) ‘Mean-field theory for scale-free random networks’, Physica A, Vol. 272 p.173-187 BA graph example 17 ER graph – BA graph 18 Mean-field approximation I. Time dependence of ki (continuous): ki ki dki ki m m ki m 2mt 2t dt kj probability of an edge to ith vertex solution: t ki t m ti 1 j ki(t) ~ t 1/2 2 time of occurrence of the ith vertex ti t 19 A.-L. Barabási, R. Albert, H. Jeong (1999) ‘Mean-field theory for scale-free random networks’, Physica A, Vol. 272 p.173-187 Mean-field approximation II. Distribution of degrees: 1 m2t t 2 Pk Pki t k P ti 2 ki t m ti k 1 Distribution of ti : Pti C t m0 t m 2t m 2t Pk ... 1 P ti 2 1 2 k m0 t k Probability density: 2 d 2m t 1 pk Pk dk m0 t k 3 3 20 A.-L. Barabási, R. Albert, H. Jeong (1999) ‘Mean-field theory for scale-free random networks’, Physica A, Vol. 272 p.173-187 Without preferential attachment Uniform growth: dki m m0 t 1 ki t m1 ln dt m0 t 1 m0 ti 1 Exponential degree distribution: k pk ... exp m p(k) exponential scale-free k 21 A.-L. Barabási, R. Albert, H. Jeong (1999) ‘Mean-field theory for scale-free random networks’, Physica A, Vol. 272 p.173-187 Without growth Construction: Constant # of vertices + new edges with preferential attachment t=N N=10 000 5N 40N Properties: At early stages → power-law scaling After t ≈ N2 steps → dense graph 22 A.-L. Barabási, R. Albert, H. Jeong (1999) ‘Mean-field theory for scale-free random networks’, Physica A, Vol. 272 p.173-187 Conclusion Power-law = Growth + Pref. Attach. Varieties k k Non-linear attachment probability: → affects the power-law scaling Parallel adding of new edges → ln 3 / ln 2 Continuously adding edges (eg. actors) → may result complete graph Continuous reconnecting (preferentially) → may result ripened state 23 A.-L. Barabási, R. Albert, H. Jeong (1999) ‘Mean-field theory for scale-free random networks’, Physica A, Vol. 272 p.173-187 Network research today Centrality Adjacency matrix Spectral density Attack tolerance 24 A.-L. Barabási, R. Albert, ‘Statistical Mechanics of Complex Networks’, arXiv:cond-mat/0106096 v1 6 Jun 2001 Thank you for the attention! 26 ER – WS – BA 27
© Copyright 2026 Paperzz