Hardy-Type Space Associated with an Infinite

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 810735, 7 pages
http://dx.doi.org/10.1155/2013/810735
Research Article
Hardy-Type Space Associated with an Infinite-Dimensional
Unitary Matrix Group
Oleh Lopushansky
Institute of Mathematics, University of Rzeszów, 16A Rejtana Street, 35-310 Rzeszów, Poland
Correspondence should be addressed to Oleh Lopushansky; [email protected]
Received 23 March 2013; Accepted 18 June 2013
Academic Editor: Qing-Wen Wang
Copyright © 2013 Oleh Lopushansky. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
We investigate an orthogonal system of the homogenous Hilbert-Schmidt polynomials with respect to a probability measure which
is invariant under the right action of an infinite-dimensional unitary matrix group. With the help of this system, a corresponding
Hardy-type space of square-integrable complex functions is described. An antilinear isomorphism between the Hardy-type space
and an associated symmetric Fock space is established.
1. Introduction
2. Preliminaries
We investigate an orthogonal system of the Hilbert-Schmidt
polynomials in the space 𝐿2πœ’ of square-integrable complex
functions on the projective limit U = limπ‘ˆ(π‘š) of unitary
←
(π‘š × π‘š)-dimensional matrix groups π‘ˆ(π‘š) (π‘š ∈ N), called
the space of virtual unitary matrices and endowed with the
projective limit measure πœ’ = limπœ’π‘š of the probability Haar
←
measures πœ’π‘š on π‘ˆ(π‘š). The measure πœ’ on the space U is
invariant under the right action of the infinite-dimensional
unitary group π‘ˆ(∞) × π‘ˆ(∞), where π‘ˆ(∞) = β‹ƒπ‘š π‘ˆ(π‘š).
The space of virtual unitary matrices U was studied by
Neretin [1] and Olshanski [2]. This notion relates to D.
Pickrell’s space of virtual Grassmannian [3] and to Kerov,
Olshanski, and Vershik’s space of virtual permutations [4].
Various spaces of integrable functions with respect to measures that are invariant under infinite-dimensional groups
have been widely applied in stochastic processes [5], infinitedimensional probability [6, 7], complex analysis [8], and so
forth.
The main results of the present paper are Theorems 67 that describe a Hardy-type subspace H2πœ’ βŠ‚ 𝐿2πœ’ spanned
by the finite type homogenous Hilbert-Schmidt polynomials
that are generated by an associated symmetric Fock space.
We consider the following infinite-dimensional unitary
matrix groups:
π‘ˆ (∞) = ⋃ {π‘ˆ (π‘š) : π‘š ∈ N} ,
π‘ˆ2 (∞) := π‘ˆ (∞) π‘ˆ (∞) ,
(1)
where π‘ˆ(π‘š) is the group of unitary (π‘š × π‘š)-matrices which
is identified with the subgroup in π‘ˆ(π‘š + 1) fixing the (π‘š +
1)th basis vector. In other words, π‘ˆ(∞) is the group of
infinite unitary matrices 𝑒 = [𝑒𝑖𝑗 ]𝑖,π‘—βˆˆN with finitely many
matrix entries 𝑒𝑖𝑗 distinct from 𝛿𝑖𝑗 . We equip every group
π‘ˆ(π‘š) with the probability Haar measure πœ’π‘š .
Following [1, 2], every matrix π‘’π‘š ∈ π‘ˆ(π‘š) with π‘š > 1, we
write in the following block matrix form:
π‘’π‘š = [
π‘§π‘šβˆ’1 π‘Ž
],
𝑏 𝑑
(2)
corresponding to the partition π‘š = (π‘š βˆ’ 1) + 1 so that π‘§π‘šβˆ’1 ∈
π‘ˆ(π‘š βˆ’ 1) and 𝑑 ∈ C. Over the group π‘ˆ(∞) (resp., π‘ˆ(π‘š)) the
right action is well defined:
𝑒 β‹… 𝑔 = π‘€βˆ’1 𝑒V,
(3)
2
Abstract and Applied Analysis
where 𝑒 belongs to π‘ˆ(∞) (resp., to π‘ˆ(π‘š)) and 𝑔 = (V, 𝑀)
belongs to π‘ˆ2 (∞) (resp., to π‘ˆ2 (π‘š) := π‘ˆ(π‘š) × π‘ˆ(π‘š)). In
[1, Proposition 0.1], [2, Lemma 3.1], it was proven that the
following Livšic-type mapping:
π‘š
: π‘ˆ (π‘š) βˆ‹ π‘’π‘š 󳨀→ π‘’π‘šβˆ’1 ∈ π‘ˆ (π‘š βˆ’ 1) ,
πœ‹π‘šβˆ’1
(4)
such that
[
βˆ’1
βˆ’ π‘Ž(1 + 𝑑) 𝑏 : 𝑑 =ΜΈ βˆ’ 1,
𝑧
π‘§π‘šβˆ’1 π‘Ž
] 󳨃󳨀→ { π‘šβˆ’1
𝑏 𝑑
π‘§π‘šβˆ’1 :
𝑑 = βˆ’1,
(5)
(which is not a group homomorphism) is Borel and surjective
onto π‘ˆ(π‘šβˆ’1) and commutes with the right action of π‘ˆ2 (π‘šβˆ’
1).
As is known [1, Theorem 1.6], the pullback of the
probability Haar measure πœ’π‘šβˆ’1 on π‘ˆ(π‘š βˆ’ 1) under the
π‘š
is the probability Haar measure πœ’π‘š on π‘ˆ(π‘š),
mapping πœ‹π‘šβˆ’1
that is,
πœ’π‘šβˆ’1 ∘
π‘š
πœ‹π‘šβˆ’1
= πœ’π‘š .
(6)
Let π‘ˆσΈ€  (π‘š) βŠ‚ π‘ˆ(π‘š) be the subset of unitary matrices
which do not have {βˆ’1}, as an eigenvalue. Then, π‘ˆσΈ€  (π‘š) is
open in π‘ˆ(π‘š), and the complement π‘ˆ(π‘š) \ π‘ˆσΈ€  (π‘š) is a πœ’π‘š negligible set. Moreover (see [2, Lemma 3.11]), the mapping
π‘š
πœ‹π‘šβˆ’1
σΈ€ 
σΈ€ 
: π‘ˆ (π‘š) 󳨀→ π‘ˆ (π‘š βˆ’ 1)
(7)
is continuous and surjective.
Consider the projective limits, taken with respect to
π‘š
and their continuous
the surjective Borel projections πœ‹π‘šβˆ’1
π‘š
restrictions πœ‹π‘šβˆ’1 |π‘ˆσΈ€  (π‘š) , respectively,
UσΈ€  = lim π‘ˆσΈ€  (π‘š) ,
U = lim π‘ˆ (π‘š) ,
←󳨀
←󳨀
(8)
called the spaces of virtual unitary matrices. Notice that U is
a Borel subset in the Cartesian product β¨‰π‘šβˆˆN π‘ˆ(π‘š) = {𝑒 =
(π‘’π‘š ) : π‘’π‘š ∈ π‘ˆ(π‘š)} endowed with the product topology,
π‘š
are Borel. Moreover, the canonical
because all mapping πœ‹π‘šβˆ’1
projections
πœ‹π‘š : UσΈ€  󳨀→ π‘ˆσΈ€  (π‘š) ,
πœ‹π‘š : U 󳨀→ π‘ˆ (π‘š) ,
(9)
π‘š
∘ πœ‹π‘š , are surjective by surjectivity
such that πœ‹π‘šβˆ’1 = πœ‹π‘šβˆ’1
π‘š
π‘š
of πœ‹π‘šβˆ’1 and πœ‹π‘šβˆ’1 |π‘ˆσΈ€  (π‘š) .
Following [2, Lemma 4.8], [1, Section 3.1], with the help
of the Kolmogorov consistent theorem, we uniquely define
a probability measure πœ’ on UσΈ€  as the projective limit under
the mapping (6),
πœ’ = limπœ’π‘š ,
(10)
←󳨀
which satisfies the equality πœ’ = πœ’π‘š βˆ˜πœ‹π‘š for all π‘š ∈ N. On U\
UσΈ€  , the measure πœ’ is zero, because πœ’π‘š is zero on π‘ˆ(π‘š) \
π‘ˆσΈ€  (π‘š) for all π‘š ∈ N.
Using (3), right action of the group π‘ˆ2 (∞) on the space
of virtual unitary matrices U can be defined (see [2, Definition 4.5]) as follows:
πœ‹π‘š (𝑒 β‹… 𝑔) = π‘€βˆ’1 πœ‹π‘š (𝑒) V,
𝑒 ∈ U,
where π‘š is so large that 𝑔 = (V, 𝑀) ∈ π‘ˆ2 (π‘š).
(11)
The canonical dense embedding 𝚀 : π‘ˆ(∞) σ΄€œσ΄€  U to any
element π‘’π‘š ∈ π‘ˆ(π‘š) assigns the unique sequence 𝑒 = (𝑒𝑙 )π‘™βˆˆN ,
such that
𝚀 : π‘ˆ (π‘š) βˆ‹ π‘’π‘š 󳨃󳨀→ (𝑒𝑙 ) ∈ U,
π‘š
(π‘’π‘š ) : 𝑙 < π‘š,
πœ‹π‘™π‘™+1 ∘ β‹… β‹… β‹… ∘ πœ‹π‘šβˆ’1
{
{
{
{π‘’π‘š :
𝑙 = π‘š,
𝑒𝑙 = {
{
𝑒
0
{[ π‘š
{
]:
𝑙 > π‘š,
{ 0 1π‘™βˆ’π‘š
(12)
where 1π‘™βˆ’π‘š is the unit in π‘ˆ(𝑙 βˆ’ π‘š). So, the image 𝚀 ∘
π‘ˆ(∞) consists of stabilizing sequences in U (see [2, Section
4]).
3. Invariant Probability Measure
In what follows, we will endow the space of virtual unitary
matrices U with the measure πœ’ = limπœ’π‘š . A complex func←
tion on U is called cylindrical [2, Definition 4.5] if it has the
following form:
𝑓 (𝑒) = (π‘“π‘š ∘ πœ‹π‘š ) (𝑒) ,
𝑒 ∈ U,
(13)
for a certain π‘š ∈ N and a certain complex function π‘“π‘š on
π‘ˆ(π‘š).
Any continuous bounded function 𝑓 on UσΈ€  has a unique
πœ’-essentially bounded extension on U, because the set U \ UσΈ€ 
is πœ’-negligible. Therefore, if the function π‘ˆσΈ€  (π‘š) βˆ‹ πœ‹π‘š (𝑒) 󳨃→
π‘“π‘š [πœ‹π‘š (𝑒)] in the definition (13) is continuous and bounded,
then the corresponding cylindrical function 𝑓 is πœ’ essentially
bounded.
By L∞
πœ’ , we denote closure of the algebraic hull of all
cylindrical πœ’-essentially bounded functions (13) with respect
to the following norm:
󡄨
σ΅„©σ΅„© σ΅„©σ΅„©
󡄨
= ess sup 󡄨󡄨󡄨𝑓 (𝑒)󡄨󡄨󡄨 .
󡄩󡄩𝑓󡄩󡄩L∞
(14)
πœ’
π‘’βˆˆU
Lemma 1. The measure πœ’ = limπœ’π‘š on U is a Radon proba←
bility measure such that
∫ 𝑓 (𝑒 β‹… 𝑔) π‘‘πœ’ (𝑒) = ∫ 𝑓 (𝑒) π‘‘πœ’ (𝑒) ,
U
U
(15)
for all 𝑔 ∈ π‘ˆ2 (∞) and 𝑓 ∈ L∞
πœ’ . For any compact set 𝐾 βŠ‚
π‘ˆ(π‘š) the following equality holds:
(πœ’ ∘ 𝚀) (𝐾) = πœ’π‘š (𝐾) .
(16)
Proof. Recall the Prohorov criterion, which is adapted to our
notation (see [9, Chapter IX.4.2, Theorem 1] or [6, Theorem
6]): there exists a Radon probability measure πœ’σΈ€  on UσΈ€  such
that
󡄨
πœ’σΈ€  = πœ’π‘š ∘ πœ‹π‘š 󡄨󡄨󡄨UσΈ€ 
βˆ€π‘š ∈ N,
(17)
if and only if for every πœ€ > 0 there exists a compact set K in
UσΈ€  such that the following inequality
(πœ’π‘š ∘ πœ‹π‘š ) (K) β‰₯ 1 βˆ’ πœ€
βˆ€π‘š ∈ N
(18)
Abstract and Applied Analysis
3
holds; in this case, πœ’σΈ€  is uniquely determined by means of
the formula πœ’σΈ€  (K) = inf π‘šβˆˆN (πœ’π‘š ∘ πœ‹π‘š )(K), where K is a
compact set in UσΈ€  .
Let 𝐾𝑛 βŠ‚ π‘ˆσΈ€  (𝑛) be a compact set with a fixed 𝑛. Putting
𝑛
(𝐾𝑛 ), we have
πΎπ‘›βˆ’1 = πœ‹π‘›βˆ’1
𝑛
πœ’π‘›βˆ’1 (πΎπ‘›βˆ’1 ) = (πœ’π‘›βˆ’1 ∘ πœ‹π‘›βˆ’1
) (𝐾𝑛 ) = πœ’π‘› (𝐾𝑛 ) .
(19)
is generated by the right action of π‘ˆ2 (∞) over U. Choosing
instead of π‘ˆ(∞) a compact subgroup π‘ˆ(π‘š) or the compact
subgroups
π‘ˆ0 = {𝑔0 (πœ—) = exp (iπœ—) : πœ— ∈ (βˆ’πœ‹, πœ‹]} ,
π‘ˆπ‘— (π‘š) = {π‘”π‘šπ‘— (πœ—) = 1π‘—βˆ’1 βŠ— exp (iπœ—) βŠ— 1π‘šβˆ’π‘— : πœ— ∈ (βˆ’πœ‹, πœ‹]}
𝑗 = 1, . . . , π‘š,
(26)
On the other hand, if we put 𝐾𝑛+1 = [ 𝐾0𝑛 01 ], then via (6),
πœ’π‘›+1 (𝐾𝑛+1 ) = (πœ’π‘› ∘ πœ‹π‘›π‘›+1 ) (𝐾𝑛+1 )
= (πœ’π‘› ∘ πœ‹π‘›π‘›+1 ) [
(20)
𝐾𝑛 0
] = πœ’π‘› (𝐾𝑛 ) .
0 1
As a consequence, the compact set K = (πΎπ‘š ) in UσΈ€  ,
generated by a compact set 𝐾𝑛 βŠ‚ π‘ˆσΈ€  (𝑛) with the help of
𝑛
, satisfies the following condition:
mappings πœ‹π‘›βˆ’1
πœ’π‘› (𝐾𝑛 ) = πœ’π‘š (πΎπ‘š )
βˆ€π‘š ∈ N.
Lemma 2. For any 𝑓 ∈ L∞
πœ’ the following equalities:
∫ π‘“π‘‘πœ’ = ∫ π‘‘πœ’ (𝑒) ∫
U
(21)
The probability Haar measure πœ’π‘› is regular on π‘ˆ(𝑛), and
the complement π‘ˆ(𝑛) \ π‘ˆσΈ€  (𝑛) is a negligible set. Hence,
if 𝐾𝑛 runs over all compact sets in π‘ˆσΈ€  (𝑛), then
sup πœ’π‘› (𝐾𝑛 ) = 1.
(22)
𝐾𝑛 βŠ‚π‘ˆσΈ€  (𝑛)
Therefore, for every πœ€ > 0 there exists a compact set 𝐾𝑛 βŠ‚
π‘ˆσΈ€  (𝑛) such that πœ’π‘› (𝐾𝑛 ) β‰₯ 1 βˆ’ πœ€. From (21), it follows that
for every πœ€ > 0 the compact set K satisfies the hypothesis
of Prohorov’s criterion:
(πœ’π‘š ∘ πœ‹π‘š ) (K) = πœ’π‘š (πΎπ‘š ) β‰₯ 1 βˆ’ πœ€
we obtain the corresponding subgroups of shifts 𝑄𝑔 with elements 𝑔 ∈ π‘ˆ2 (π‘š) or with elements 𝑔0 (πœ—) ∈ π‘ˆ02 and π‘”π‘šπ‘— (πœ—) ∈
π‘ˆπ‘—2 (π‘š), respectively. Here, 1π‘š means the unit element in
π‘ˆ(π‘š).
βˆ€π‘š ∈ N.
(23)
So, in view of this criterion, there exists a unique Radon probability measure πœ’σΈ€  on UσΈ€  which satisfies the condition (17).
However, on the projective limits UσΈ€  = limπ‘ˆσΈ€  (π‘š), there exists
π‘ˆ2 (π‘š)
U
∫ 𝑓 π‘‘πœ’ =
U
𝑄𝑔 𝑓 (𝑒) 𝑑 (πœ’π‘š βŠ— πœ’π‘š ) (𝑔) , (27)
πœ‹
1
∫ π‘‘πœ’ (𝑒) ∫ 𝑄𝑔(πœ—) 𝑓 (𝑒) π‘‘πœ—,
2πœ‹ U
βˆ’πœ‹
(28)
with 𝑔(πœ—) ∈ π‘ˆ02 or π‘ˆπ‘—2 (π‘š) hold.
Proof. For any 𝑓 ∈ L∞
πœ’ , the function (𝑒, 𝑔) 󳨃→ 𝑄𝑔 𝑓(𝑒) =
𝑓(𝑒 β‹… 𝑔) is integrable on the Cartesian product U × π‘ˆ2 (π‘š). By
the Fubini theorem, we obtain
∫ π‘‘πœ’ (𝑒) ∫
π‘ˆ2 (π‘š)
U
=∫
π‘ˆ2 (π‘š)
𝑄𝑔 𝑓 (𝑒) 𝑑 (πœ’π‘š βŠ— πœ’π‘š ) (𝑔)
(29)
𝑑 (πœ’π‘š βŠ— πœ’π‘š ) (𝑔) ∫ 𝑄𝑔 𝑓 (𝑒) π‘‘πœ’ (𝑒) .
U
This equality yields the required formula (27), because
the internal integral on the right-hand side is independent
of 𝑔 and βˆ«π‘ˆ2 (π‘š) 𝑑(πœ’π‘š βŠ— πœ’π‘š ) = 1. In turn, putting instead
of π‘ˆ(π‘š) the subgroups π‘ˆ0 and π‘ˆπ‘— (π‘š), we obtain equalities
(28).
←
a unique π‘ˆ2 (∞)-invariant Radon measure πœ’, determined by
the equality (15). Using the uniqueness property of projective
limits, we obtain πœ’σΈ€  = πœ’. The measure πœ’ on U\UσΈ€  is defined
to be zero, because πœ’π‘š is zero on π‘ˆ(π‘š) \ π‘ˆσΈ€  (π‘š).
As a consequence of (21), we obtain (16), because
πœ’ (K) = inf πœ’π‘š (πΎπ‘š ) = πœ’π‘› (𝐾𝑛 ) .
(24)
π‘šβˆˆN
2
As is known [1, Proposition 3.2], the measure πœ’ is π‘ˆ (∞)invariant under the right actions (11) on the space U. Hence,
for every 𝑓 ∈ L∞
πœ’ , the equality (15) holds.
4. Shift Groups
𝑄𝑔 𝑓 (𝑒) = 𝑓 (𝑒 β‹… 𝑔) ,
𝑔 ∈ π‘ˆ (∞) 𝑒 ∈ U,
Consider the countable orthogonal Hilbertian sum
E := ⨁Cπ‘š = {π‘₯ = (π‘₯π‘š ) : π‘₯π‘š ∈ Cπ‘š , β€–π‘₯β€–E < ∞} ,
π‘šβˆˆN
(30)
with the scalar product ⟨π‘₯ | π‘¦βŸ©E = βˆ‘π‘š ⟨π‘₯π‘š | π‘¦π‘š ⟩Cπ‘š , where
every coordinate π‘₯π‘š ∈ Cπ‘š is identified with its image (0, . . . ,
0, π‘₯π‘š , 0, . . .) ∈ E under the embedding Cπ‘š σ΄€œσ΄€  E.
Let βŠ—π‘›h E stand for the complete 𝑛th tensor power of
the Hilbert subspace E, endowed with the Hilbertian scalar
product and norm, respectively,
⟨π‘₯1 βŠ— β‹… β‹… β‹… βŠ— π‘₯𝑛 | πœ“π‘› βŸ©βŠ—π‘› E = βˆ‘βŸ¨π‘₯1 | 𝑦1𝑗 ⟩E . . . ⟨π‘₯𝑛 | 𝑦𝑛𝑗 ⟩E ,
Consider that in the space L∞
πœ’ , the group of shifts
2
5. The Homogeneous Hilbert-Schmidt
Polynomials
h
(25)
𝑗
1/2
σ΅„©σ΅„© σ΅„©σ΅„©
σ΅„©σ΅„©πœ“π‘› σ΅„©σ΅„©βŠ—π‘› E = βŸ¨πœ“π‘› | πœ“π‘› βŸ©βŠ—π‘› E ,
h
h
(31)
4
Abstract and Applied Analysis
where π‘₯1 βŠ— β‹… β‹… β‹… βŠ— π‘₯𝑛 , 𝑦1𝑗 βŠ— β‹… β‹… β‹… βŠ— 𝑦𝑛𝑗 ∈ βŠ—π‘›h E with π‘₯𝑑𝑗 , 𝑦𝑑𝑗 ∈ E for
all 𝑑 = 1, . . . , 𝑛 and πœ“π‘› = βˆ‘π‘— 𝑦1𝑗 βŠ— β‹… β‹… β‹… βŠ— 𝑦𝑛𝑗 denotes a finite
sum. Put βŠ—0h E = C. We use the following short denotation:
π‘₯βŠ—π‘› = π‘₯ βŠ— β‹… β‹… β‹… βŠ— π‘₯,
π‘₯ ∈ E.
(32)
π‘š
Replacing the space E by the subspace C , we similarly
define the tensor product βŠ—π‘›h Cπ‘š . There is the unitary embedding βŠ—π‘›h Cπ‘š σ΄€œσ΄€  βŠ—π‘›h E. If π‘š = 1, then βŠ—π‘›h C = C.
For any finite sum πœ“π‘› = βˆ‘π‘— 𝑦1𝑗 βŠ— β‹… β‹… β‹… βŠ— 𝑦𝑛𝑗 from the space
βŠ—π‘›h Cπ‘š (or βŠ—π‘›h E), we can to define the finite type 𝑛-homogeneous Hilbert-Schmidt polynomials:
𝑛
Cπ‘š βˆ‹ π‘₯ 󳨃󳨀→ ⟨π‘₯βŠ—π‘› | πœ“π‘› βŸ©βŠ—π‘› Cπ‘š = βˆ‘βˆβŸ¨π‘₯ | 𝑦𝑑𝑗 ⟩Cπ‘š .
h
𝑗 𝑑=1
(33)
in Cπ‘š ,
E (E) = ⋃ {E (Cπ‘š ) : π‘š ∈ N}
in E,
(34)
βžβžβžβžβžβžβžβžβžβžβžβžβžβžβžβžβžπ‘™
0, . . . , 0, 1 , 0, . . . , 0)π‘š .
where eπ‘šπ‘™ = (⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
If s : {1, . . . , 𝑛} 󳨃→ {s(1), . . . , s(𝑛)} runs over all 𝑛elements permutations S(𝑛), then the symmetric 𝑛th tensor
power βŠ™π‘›h Cπ‘š is defined to be a codomain of the symmetrization mapping:
βŠ—π‘›h Cπ‘š βˆ‹ π‘₯1 βŠ— β‹… β‹… β‹… βŠ— π‘₯𝑛 󳨃󳨀→ π‘₯1 βŠ™ β‹… β‹… β‹… βŠ™ π‘₯𝑛 ,
1
π‘₯1 βŠ™ β‹… β‹… β‹… βŠ™ π‘₯𝑛 :=
βˆ‘ π‘₯ βŠ— β‹… β‹… β‹… βŠ— π‘₯s(𝑛) ,
𝑛! s∈S(𝑛) s(1)
(35)
which is an orthogonal projector. Similarly, the symmetric
𝑛th tensor power βŠ™π‘›h E can be defined. Clearly, βŠ™π‘›h Cπ‘š is a closed
subspace in βŠ™π‘›h E.
Given a pair of numbers (π‘š, 𝑛) ∈ N × Z+ , we consider
the 𝑛-fold tensor power of the canonical mapping πœ‹π‘š : U βˆ‹
𝑒 󳨃→ πœ‹π‘š (𝑒) ∈ π‘ˆ(π‘š),
U βˆ‹ 𝑒 󳨃󳨀→
βŠ—π‘›
πœ‹π‘š
(𝑒) ∈
L (βŠ™π‘›h Cπ‘š ) ,
(36)
βŠ—π‘›
where πœ‹π‘š
(𝑒) := ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
πœ‹π‘š (𝑒) βŠ— β‹… β‹… β‹… βŠ— πœ‹π‘š (𝑒) . If 𝑛 = 0, we put
𝑛
βŠ—0
πœ‹π‘š (𝑒) = 1 for all 𝑒 ∈ U and π‘š ∈ N. The mapping (36) is
Borel and has a continuous restriction to UσΈ€  , because πœ‹π‘š has
the same property (see Section 2).
Let aπ‘š ∈ Cπ‘š be an arbitrary fixed element such that
𝑛 π‘š
β€–aπ‘š β€–Cπ‘š = 1. Then, aβŠ—π‘›
π‘š ∈ βŠ™h C . Using the mapping (36),
we can write
βŠ—π‘›
[πœ‹π‘š
(𝑒)] (aβŠ—π‘›
π‘š)
= ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
[πœ‹π‘š (𝑒)] (aπ‘š ) βŠ— β‹… β‹… β‹… βŠ— [πœ‹π‘š (𝑒)] (aπ‘š ).
𝑛
(37)
To any 𝑛-homogeneous Hilbert-Schmidt polynomial (33),
there corresponds the function
πœ“π‘›βˆ—
(𝑒) :=
βŠ—π‘›
⟨[πœ‹π‘š
𝑛
(𝑒)] (aβŠ—π‘›
π‘š)
| πœ“π‘› βŸ©βŠ—π‘› Cπ‘š
h
= βˆ‘βˆβŸ¨[πœ‹π‘š (𝑒)] (aπ‘š ) | 𝑦𝑑𝑗 ⟩Cπ‘š
𝑗 𝑑=1
Definition 3. We define P𝑛h (Cπ‘š ) to be the space of all functions πœ“π‘›βˆ— of the variable 𝑒 ∈ U, determined by the finite type
𝑛-homogeneous Hilbert-Schmidt polynomials (33).
Lemma 4. For any element aπ‘š ∈ Cπ‘š such that β€–aπ‘š β€–Cπ‘š = 1
the set
Sπ‘š = {π‘₯ = [πœ‹π‘š (𝑒)] (aπ‘š ) : 𝑒 ∈ U}
(39)
coincides with the unit sphere in Cπ‘š . As a consequence, the
one-to-one antilinear corresponding
Consider the canonical orthonormal bases:
E (Cπ‘š ) = {eπ‘š1 , . . . , eπ‘šπ‘š }
of the variable 𝑒 ∈ U. Any cylindrical function of the form
U βˆ‹ 𝑒 󳨃→ ⟨[πœ‹π‘š (𝑒)](aπ‘š ) | 𝑦𝑑𝑗 ⟩Cπ‘š has a continuous bounded
restriction to UσΈ€  . Therefore, it is πœ’-essentially bounded on U,
because U \ UσΈ€  is a πœ’-negligible set. Consequently, πœ“π‘›βˆ— ∈ 𝐿∞
πœ’
and πœ“π‘›βˆ— |UσΈ€  is continuous and bounded.
(38)
βŠ™π‘›h Cπ‘š βˆ‹ πœ“π‘› σ΄€˜σ΄€― πœ“π‘›βˆ— ∈ P𝑛h (Cπ‘š ) .
(40)
Holds, and any function πœ“π‘›βˆ— is independent of the choice of an
element aπ‘š ∈ Sπ‘š .
Proof. Suppose, on the contrary, that there is an element πœ“π‘› ∈
βŠ™π‘›h Cπ‘š such that ⟨π‘₯βŠ—π‘› | πœ“π‘› βŸ©βŠ—π‘›h Cπ‘š = 0 for all π‘₯ = [πœ‹π‘š (𝑒)](aπ‘š ) ∈
Sπ‘š with 𝑒 ∈ U. The mapping
πœ‹π‘š : U βˆ‹ 𝑒 󳨃󳨀→ πœ‹π‘š (𝑒) ∈ π‘ˆ (π‘š)
(41)
is surjective by surjectivity of the mapping πœ‹π‘š (see [2,
Lemma 3.1]). Hence, the set Sπ‘š coincides with the unit sphere
in Cπ‘š and is independent on the choice of an element aπ‘š . By
𝑛-homogeneity, we have ⟨π‘₯βŠ—π‘› | πœ“π‘› βŸ©βŠ—π‘›h Cπ‘š = 0 for all π‘₯ ∈ Cπ‘š .
Apply the following polarization formula for symmetric
tensor products (see, e.g., [10, Section 1.5]):
𝑧1 βŠ™ β‹… β‹… β‹… βŠ™ 𝑧𝑛 =
1
βˆ‘ βˆ‘ 𝛿 β‹… β‹… β‹… 𝛿𝑛 π‘₯βŠ—π‘› ,
2𝑛 𝑛! 1≀𝑑≀𝑛 𝛿 =±1 1
(42)
𝑑
with π‘₯ = βˆ‘π‘›π‘‘=1 𝛿𝑑 𝑧𝑑 ∈ Cπ‘š , which is valid for all 𝑧1 , . . . , 𝑧𝑛 ∈
Cπ‘š . It follows that βŸ¨π‘§1 βŠ™ β‹… β‹… β‹… βŠ™ 𝑧𝑛 | πœ“π‘› βŸ©βŠ—π‘›h Cπ‘š = 0 for all
elements 𝑧1 , . . . , 𝑧𝑛 ∈ Cπ‘š . Hence, πœ“π‘› = 0, because the subset
of all elements 𝑧1 βŠ™β‹… β‹… β‹…βŠ™π‘§π‘› is total in βŠ™π‘›h Cπ‘š . As a consequence,
the subset
βŠ—π‘›
{π‘₯βŠ—π‘› = [πœ‹π‘š
(𝑒)] (aβŠ—π‘›
π‘š ) : 𝑒 ∈ U}
(43)
is also total in βŠ™π‘›h Cπ‘š . It immediately yields the correspondence (40).
Consider the symmetric Fock space F and its closed
subspace Fπ‘š , where
F := C βŠ• E βŠ• (βŠ™2h E) βŠ• (βŠ™3h E) βŠ• β‹… β‹… β‹… ,
Fπ‘š := C βŠ• Cπ‘š βŠ• (βŠ™2h Cπ‘š ) βŠ• (βŠ™3h Cπ‘š ) βŠ• β‹… β‹… β‹… .
(44)
Abstract and Applied Analysis
5
of the variable 𝑒 ∈ U, where we take aπ‘š = eπ‘š1 . Consider the
system of functions of the variable 𝑒 ∈ U,
We will use the following notations:
(π‘š) := (π‘š1, . . . , π‘šπ‘š) ,
βˆ—π‘˜
π‘šβˆˆN
(45)
󡄨󡄨
󡄨
σ΅„¨σ΅„¨π‘˜(π‘š) 󡄨󡄨󡄨 := π‘˜π‘š1 + β‹… β‹… β‹… + π‘˜π‘šπ‘š ,
βˆ—π‘˜
As is well known (see, e.g., [11]), the system of symmetric
tensor elements, indexed by the set π‘˜(π‘š) ,
βŠ—π‘˜
π‘šπ‘š
E (βŠ™π‘›h Cπ‘š ) = {e(π‘š)(π‘š) = eπ‘š1π‘š1 βŠ™ β‹… β‹… β‹… βŠ™ eβŠ—π‘˜
π‘šπ‘š :
(46)
󡄨󡄨
󡄨󡄨
π‘˜(π‘š) ∈ Zπ‘š
+ ; σ΅„¨σ΅„¨π‘˜(π‘š) 󡄨󡄨 = 𝑛}
βŠ™π‘›h Cπ‘š βŠ‚ Fπ‘š .
(47)
We will also use the following notations:
[π‘š] := {(11) , (21, 22) , . . . , (π‘š1, . . . , π‘šπ‘š)} ,
π‘š
{π‘˜} := {π‘˜(1) , . . . , π‘˜(π‘š) } βˆˆβ¨‰
π‘Ÿ=1
Zπ‘Ÿ+ ,
(48)
Then, the system of symmetric tensor elements with a fixed 𝑛,
indexed by the sets [π‘š] and {π‘˜},
βŠ—π‘˜
(1)
(π‘š)
E𝑛 = ⋃ {eβŠ—{π‘˜}
[π‘š] = e(1) βŠ™ β‹… β‹… β‹… βŠ™ e(π‘š) :
π‘šβˆˆN
βŠ—π‘˜
|π‘˜
|
e(1)(1) ∈ E (βŠ™h (1) C) , . . . , e(π‘š)(π‘š) ∈ E (βŠ™h (π‘š) Cπ‘š )
with fixed |{π‘˜}| = 𝑛} ,
forms an orthogonal basis in the subspace βŠ™π‘›h E βŠ‚ F. Thus, the
system
E = {E𝑛 : 𝑛 ∈ Z+ }
Eβˆ—π‘š,𝑛 βŠ‚ P𝑛h (Cπ‘š ) ,
(51)
βŠ—π‘˜
βŠ—π‘›
(π‘š)
e(π‘š)(π‘š) (𝑒) := ⟨[πœ‹π‘š
(𝑒)] (eβŠ—π‘›
π‘š1 ) | e(π‘š) ⟩
βŠ—π‘›h Cπ‘š
π‘Ÿ=1
(54)
π‘˜
eπ‘šπ‘Ÿ ⟩Cπ‘šπ‘Ÿπ‘š ,
𝑓 ∈ L∞
πœ’ .
(55)
Denote by H2πœ’π‘š the 𝐿2πœ’ -closure of complex linear spans
of the subsystem Eβˆ—π‘š . As is well known (see, e.g., [12, Theorem
5.6.8]), the space H2πœ’π‘š is isomorphic to the classic Hardy
space H2πœ’π‘š (Bπ‘š ) of analytic complex functions on the open
unit ball Bπ‘š = {π‘₯π‘š ∈ Cπ‘š : β€–π‘₯π‘š β€–Cπ‘š < 1}. Therefore, the following more general definition seems natural (see, also [8]).
Definition 5. The Hardy-type space H2πœ’ on the space of
virtual unitary matrices U is defined to be the 𝐿2πœ’ -closure of
the complex linear span of the system Eβˆ— .
Theorem 6. The system Eβˆ— of all functions eβˆ—{π‘˜}
[π‘š]
βˆ—π‘˜
e(π‘š)(π‘š)
βˆ—π‘˜
e(π‘Ÿ)(π‘Ÿ)
=
Eβˆ—π‘Ÿ,|π‘˜(π‘Ÿ) |
β‹… β‹…β‹…β‹… β‹…
with π‘š ∈ N, such that
∈
as
π‘Ÿ = 1, . . . , π‘š, forms an orthogonal basis in the Hardy-type
spaces H2πœ’ with norms
π‘š
(π‘Ÿ βˆ’ 1)!(π‘˜)π‘Ÿ !
σ΅„©σ΅„© βˆ—{π‘˜} σ΅„©σ΅„©
σ΅„©σ΅„©e[π‘š] σ΅„©σ΅„© 2 = (∏
󡄨󡄨 )
󡄨󡄨
󡄩𝐿 πœ’
σ΅„©
π‘Ÿ=1 (π‘Ÿ βˆ’ 1 + 󡄨󡄨(π‘˜)π‘Ÿ 󡄨󡄨)!
1/2
.
(56)
Proof. If |{π‘˜}| =ΜΈ |{π‘ž}|, then from (28), it follows that
βˆ—{π‘ž}
∫ eβˆ—{π‘˜}
[π‘š] β‹… e[𝑛] π‘‘πœ’
U
βˆ—{π‘ž}
= ∫ eβˆ—{π‘˜}
[π‘š] (exp (iπœ—) 𝑒) β‹… e[𝑛] (exp (iπœ—) 𝑒) π‘‘πœ’ (𝑒)
U
πœ‹
1
βˆ—{π‘ž}
󡄨󡄨 󡄨󡄨
∫ eβˆ—{π‘˜}
[π‘š] e[𝑛] π‘‘πœ’ ∫ exp (i (|{π‘˜}| βˆ’ 󡄨󡄨{π‘ž}󡄨󡄨) πœ—) π‘‘πœ—
2πœ‹ U
βˆ’πœ‹
= 0.
(57)
=
of the following πœ’π‘š -integrable cylindrical functions:
= ∏⟨(πœ‹π‘š ∘ 𝑒) (eπ‘š1 ) |
Eβˆ—π‘š = {Eβˆ—π‘š,𝑛 : 𝑛 ∈ Z+ } .
Let 𝐿2πœ’ be the space of square πœ’-integrable complex functions , 𝑓 on the space of virtual matrices U. Since πœ’ is a
2
probability measure, the embedding L∞
πœ’ βŠ‚ 𝐿 πœ’ holds and
(50)
forms an orthogonal basis in the symmetric Fock space F.
By virtue of the one-to-one mapping (40), the system
of symmetric tensor elements E(βŠ™π‘›h Cπ‘š ) uniquely defines the
following corresponding system:
π‘š
Eβˆ— = {Eβˆ—π‘› : 𝑛 ∈ Z+ } ,
βˆ—π‘˜
e(1)(1)
(49)
βˆ—π‘˜
generated by the system of symmetric tensor elements E𝑛 . All
these functions belong to the space L∞
πœ’ by their definition.
Denote
π‘’βˆˆU
{π‘˜}! := π‘˜(1) ! β‹… . . . β‹… π‘˜(π‘š) !.
|π‘˜ |
with fixed |{π‘˜}| = 𝑛} ,
󡄨
σ΅„©σ΅„© σ΅„©σ΅„©
󡄨
󡄩󡄩𝑓󡄩󡄩𝐿2πœ’ ≀ ess sup 󡄨󡄨󡄨𝑓 (𝑒)󡄨󡄨󡄨 ,
󡄨
󡄨 󡄨
󡄨
|{π‘˜}| := σ΅„¨σ΅„¨σ΅„¨π‘˜(1) 󡄨󡄨󡄨 + β‹… β‹… β‹… + σ΅„¨σ΅„¨σ΅„¨π‘˜(π‘š) 󡄨󡄨󡄨 ,
βŠ—π‘˜
(53)
6. The Hardy-Type Space
forms an orthogonal basis in the subspace
βŠ—π‘˜
βˆ—π‘˜
e(1)(1) ∈ Eβˆ—1,|π‘˜(1) | , . . . , e(π‘š)(π‘š) ∈ Eβˆ—π‘š,|π‘˜(π‘š) |
π‘˜(π‘š) ! := π‘˜π‘š1 ! β‹… . . . β‹… π‘˜π‘šπ‘š !.
βŠ—π‘˜
βˆ—π‘˜
(1)
(π‘š)
Eβˆ—π‘› = ⋃ {eβˆ—{π‘˜}
[π‘š] = e(1) β‹… β‹… β‹… β‹… β‹… e(π‘š) :
π‘˜(π‘š) := (π‘˜π‘š1 , . . . , π‘˜π‘šπ‘š ) ∈ Zπ‘š
+,
(52)
βˆ—{π‘ž}
2
So, eβˆ—{π‘˜}
[π‘š] βŠ₯ e[𝑛] in the space 𝐿 πœ’ if |{π‘˜}| =ΜΈ |{π‘ž}| for all indices
[π‘š], [𝑛].
6
Abstract and Applied Analysis
Let |{π‘˜}| = |{π‘ž}| and π‘š > 𝑛 for definiteness. If the
βˆ—{π‘ž}
elements eβˆ—{π‘˜}
[π‘š] and e[𝑛] are different, then there exists a
subindex π‘šπ‘  ∈ {11, 21, 22, . . ., π‘š1, . . ., π‘šπ‘š} in the blockindex [π‘š] = [(11), (21, 22), . . ., (π‘š1, . . ., π‘šπ‘š)] such that π‘šπ‘  βˆ‰
{11, 21, 22, . . . , 𝑛1, . . . , 𝑛𝑛}, where [𝑛] = [(11), (21, 22), . . .,
(𝑛1, . . . , 𝑛𝑛)]. The formula (28) implies that for the group of
shifts π‘„π‘”π‘šπ‘  (πœ—) generated by elements π‘”π‘šπ‘  (πœ—) ∈ π‘ˆπ‘ 2 (π‘š) with the
subindex π‘šπ‘ ,
βˆ—{π‘ž}
∫ eβˆ—{π‘˜}
[π‘š] β‹… e[𝑛] π‘‘πœ’
U
=∫
U
=
󡄨
󡄨󡄨2
󡄨
∫ 󡄨󡄨󡄨󡄨eβˆ—{π‘˜}
[π‘š] 󡄨󡄨 π‘‘πœ’
U
π‘š
= ∫ π‘‘πœ’ (𝑒) ∏ ∫
U
π‘Ÿ=1
π‘ˆ2
(π‘Ÿ)
󡄨 βˆ—(π‘˜) 󡄨2
π‘„π‘”π‘Ÿ 󡄨󡄨󡄨󡄨e(π‘Ÿ) π‘Ÿ 󡄨󡄨󡄨󡄨 (𝑒) 𝑑 (πœ’π‘Ÿ βŠ— πœ’π‘Ÿ ) (π‘”π‘Ÿ )
π‘š σ΅„©
σ΅„© βˆ—π‘˜ σ΅„©σ΅„©2
= βˆσ΅„©σ΅„©σ΅„©e(π‘Ÿ)(π‘Ÿ) σ΅„©σ΅„©σ΅„© 2 ,
σ΅„©
󡄩𝐿 πœ’π‘Ÿ
π‘Ÿ=1
(62)
π‘„π‘”π‘šπ‘  (πœ—) eβˆ—{π‘˜}
[π‘š]
β‹…
βˆ—{π‘ž}
π‘„π‘”π‘šπ‘  (πœ—) e[𝑛] π‘‘πœ’
(58)
πœ‹
1
βˆ—{π‘ž}
∫ eβˆ—{π‘˜} β‹… e π‘‘πœ’ ∫ exp (iπ‘˜π‘šπ‘  πœ—) π‘‘πœ— = 0.
2πœ‹ U [π‘š] [𝑛]
βˆ’πœ‹
because ∫U π‘‘πœ’ = 1. It follows that
π‘š σ΅„©
π‘š
σ΅„©2
σ΅„©σ΅„© βˆ—{π‘˜} σ΅„©σ΅„©2
π‘Ÿ!
(π‘Ÿ) σ΅„©
σ΅„©σ΅„© = ∏ (π‘Ÿ βˆ’ 1)!(π‘˜)
σ΅„©σ΅„©e[π‘š] σ΅„©σ΅„© 2 = βˆσ΅„©σ΅„©σ΅„©σ΅„©eβˆ—π‘˜
,
󡄨
σ΅„©
(π‘Ÿ)
2
σ΅„©
󡄩𝐿 πœ’
󡄨
σ΅„©
󡄩𝐿 πœ’π‘Ÿ π‘Ÿ=1 (π‘Ÿ βˆ’ 1 + 󡄨󡄨(π‘˜)π‘Ÿ 󡄨󡄨󡄨󡄨) !
π‘Ÿ=1
βˆ—{π‘ž}
2
Hence, eβˆ—{π‘˜}
[π‘š] βŠ₯ e[𝑛] in 𝐿 πœ’ .
βˆ—π‘˜
eβˆ—{π‘˜}
[π‘š]
βˆ—{π‘ž}
=ΜΈ e[𝑛] ,
then
Let now |{π‘˜}| = |{π‘ž}| and π‘š = 𝑛. If
{π‘˜} =ΜΈ {π‘ž}. Hence, there exists a sub-index π‘Ÿπ‘  in the blockindex [π‘š] = [𝑛] such that π‘˜π‘Ÿπ‘  =ΜΈ π‘žπ‘Ÿπ‘  . Similarly as previous
mentioned, applying the formula (28) to the group of shifts
π‘„π‘”π‘Ÿπ‘  (πœ—) generated by elements π‘”π‘Ÿπ‘  (πœ—) ∈ π‘ˆπ‘ 2 (π‘Ÿ) with the subindex π‘Ÿπ‘ , we get
βˆ—{π‘ž}
∫ eβˆ—{π‘˜}
[π‘š] β‹… e[𝑛] π‘‘πœ’
U
=
by the well-known formula [12, Section 1.4.9]. Using the
formula (27) π‘š-times for π‘Ÿ = 1, . . . , π‘š, we get
πœ‹
1
βˆ—{π‘ž}
∫ eβˆ—{π‘˜}
[π‘š] e[𝑛] π‘‘πœ’ ∫ exp (i (π‘˜π‘Ÿπ‘  βˆ’ π‘žπ‘Ÿπ‘  ) πœ—) π‘‘πœ—
2πœ‹ U
βˆ’πœ‹
= 0.
(59)
βˆ—π‘˜
(π‘š)
(π‘š)
for all eβˆ—{π‘˜}
[π‘š] = e(1) β‹… β‹… β‹… β‹… β‹… e(π‘š) .
As is known (see, e.g., [11]), the system Eπ‘š of symmetric
βŠ—(π‘˜)
tensors e(π‘š) π‘š with a fixed π‘š forms an orthogonal basis
βŠ—(π‘˜)
in the symmetric Fock space Fπ‘š with norms β€–e(π‘š) π‘š β€–F
√(π‘˜)π‘š !/|(π‘˜)π‘š |!. Similarly, the system E of symmetric tensors
βŠ—π‘˜
βŠ—(π‘˜)
βŠ—(π‘˜)1
eβŠ—{π‘˜}
βŠ™ β‹… β‹… β‹… βŠ™ e(π‘š)(π‘š) with all π‘š ∈ N, such that e(π‘Ÿ) π‘Ÿ ∈
[π‘š] = e(1)
Eπ‘Ÿ,|(π‘˜)π‘Ÿ | as π‘Ÿ = 1, . . . , π‘š, forms an orthogonal basis in the
√
symmetric Fock space F with norms β€–eβŠ—{π‘˜}
[π‘š] β€–F = {π‘˜}!/|{π‘˜}|!.
Combining Lemma 4, Theorem 6, and [12, Theorem
5.6.8], we obtain the following.
Theorem 7. Antilinear extensions of the one-to-one mappings
between the orthonormal bases
π‘ˆ2 (π‘Ÿ)
βˆ—(π‘˜)
e(π‘š) π‘š
e(π‘š) π‘š
σ΅„©σ΅„© βŠ—(π‘˜)π‘š σ΅„©σ΅„© σ΄€˜σ΄€― σ΅„©σ΅„© βˆ—(π‘˜)π‘š σ΅„©σ΅„© ,
σ΅„©σ΅„©e(π‘š) σ΅„©σ΅„©
σ΅„©σ΅„©e(π‘š) σ΅„©σ΅„© 2
σ΅„©
σ΅„©Fπ‘š
σ΅„©
󡄩𝐿 πœ’π‘š
βˆ—{π‘ž}
e[𝑛]
Hence, in this case also
βŠ₯
under the measure πœ’.
Let π‘”π‘Ÿ = (1π‘Ÿ , π‘€π‘Ÿ ) ∈ π‘ˆ (π‘Ÿ) and 𝑒 ∈ U. Using (11) and (52),
we have
∫
=
π‘š
βŠ—(π‘˜)
eβˆ—{π‘˜}
[π‘š]
2
(63)
(64)
eβŠ—{π‘˜}
eβˆ—{π‘˜}
[π‘š]
[π‘š]
σ΅„©σ΅„© βŠ—{π‘˜} σ΅„©σ΅„© σ΄€˜σ΄€― σ΅„©σ΅„© βˆ—{π‘˜} σ΅„©σ΅„© ,
σ΅„©σ΅„©e[π‘š] σ΅„©σ΅„© 2
σ΅„©σ΅„©σ΅„©e[π‘š] σ΅„©σ΅„©σ΅„©F
σ΅„©
󡄩𝐿 πœ’
󡄨 βˆ—(π‘˜) 󡄨2
π‘„π‘”π‘Ÿ 󡄨󡄨󡄨󡄨e(π‘Ÿ) π‘Ÿ 󡄨󡄨󡄨󡄨 (𝑒) 𝑑 (πœ’π‘Ÿ βŠ— πœ’π‘Ÿ ) (π‘”π‘Ÿ )
π‘Ÿ 󡄨
π‘˜π‘Ÿπ‘™ 󡄨󡄨2
󡄨
βˆσ΅„¨σ΅„¨σ΅„¨σ΅„¨βŸ¨[π‘€π‘Ÿβˆ’1 πœ‹π‘Ÿ (𝑒)] (eπ‘Ÿ1 ) | eπ‘Ÿπ‘™ ⟩Cπ‘Ÿ 󡄨󡄨󡄨󡄨 π‘‘πœ’π‘Ÿ (π‘€π‘Ÿ ) .
󡄨
π‘ˆ(π‘Ÿ) 𝑙=1 󡄨
(60)
uniquely define the corresponding anti-linear isometric isomorphisms
However, the previous integral with the Haar measure πœ’π‘Ÿ is
independent of πœ‹π‘Ÿ (𝑒) ∈ π‘ˆ(π‘Ÿ). It follows that
Reasoning by analogy with [8, Proposition 6.1 and Theorem 7.1], it is easy to show that the Hardy space H2πœ’ possesses
the reproducing kernel of a Cauchy type
=∫
∫
π‘ˆ2 (π‘Ÿ)
󡄨 βˆ—(π‘˜) 󡄨2
π‘„π‘”π‘Ÿ 󡄨󡄨󡄨󡄨e(π‘Ÿ) π‘Ÿ 󡄨󡄨󡄨󡄨 (𝑒) 𝑑 (πœ’π‘Ÿ βŠ— πœ’π‘Ÿ ) (π‘”π‘Ÿ )
π‘Ÿ 󡄨
π‘˜π‘Ÿπ‘™ 󡄨󡄨2
󡄨
βˆσ΅„¨σ΅„¨σ΅„¨σ΅„¨βŸ¨π‘€π‘Ÿβˆ’1 (eπ‘Ÿ1 ) | eπ‘Ÿπ‘™ ⟩Cπ‘Ÿ 󡄨󡄨󡄨󡄨 π‘‘πœ’π‘Ÿ (π‘€π‘Ÿ )
󡄨
π‘ˆ(π‘Ÿ) 𝑙=1 󡄨
=∫
(π‘Ÿ βˆ’ 1)!(π‘˜)π‘Ÿ !
σ΅„©σ΅„© βˆ—(π‘˜)π‘Ÿ σ΅„©σ΅„©2
=
󡄨󡄨 = σ΅„©σ΅„©σ΅„©e(π‘Ÿ) 󡄩󡄩󡄩𝐿2πœ’
󡄨󡄨
(π‘Ÿ βˆ’ 1 + 󡄨󡄨(π‘˜)π‘Ÿ 󡄨󡄨) !
π‘Ÿ
(61)
Fπ‘š ≃ H2πœ’π‘š (Bπ‘š ) ,
F ≃ H2πœ’ .
(65)
βˆ—{π‘˜}
eβˆ—{π‘˜}
[π‘š] (V) e[π‘š] (𝑒)
C (V, 𝑒) = βˆ‘ βˆ‘
σ΅„©σ΅„© βˆ—{π‘˜} σ΅„©σ΅„©2
σ΅„©σ΅„©e[π‘š] σ΅„©σ΅„© 2
π‘›βˆˆZ+ |{π‘˜}|=𝑛
σ΅„©
󡄩𝐿 πœ’
∞
βˆ’π‘š
= ∏ (1 βˆ’ ⟨(πœ‹π‘š ∘ V) (eπ‘š1 ) | (πœ‹π‘š ∘ 𝑒) (eπ‘š1 )⟩E )
,
π‘š=1
(66)
Abstract and Applied Analysis
7
with 𝑒, V ∈ U, where the sum βˆ‘|{π‘˜}|=𝑛 is over all indices {π‘˜} ∈
π‘Ÿ
{β¨‰π‘š
π‘Ÿ=1 Z+ : π‘š ∈ N} such that |{π‘˜}| = 𝑛. As a consequence, the
integral representation of any function 𝑓 ∈ H2πœ’ ,
𝑓 (πœ†V) = ∫ 𝑓 (𝑒) C (πœ†V, 𝑒) π‘‘πœ’ (𝑒)
U
(67)
gives a unique analytic extension in the complex variable πœ† ∈
B1 for all elements V ∈ U such that
σ΅„©
σ΅„©2
βˆ‘ π‘šσ΅„©σ΅„©σ΅„©(πœ‹π‘š ∘ V) (eπ‘š1 )σ΅„©σ΅„©σ΅„©Cπ‘š < ∞.
π‘šβˆˆN
(68)
References
[1] Y. A. Neretin, β€œHua-type integrals over unitary groups and over
projective limits of unitary groups,” Duke Mathematical Journal,
vol. 114, no. 2, pp. 239–266, 2002.
[2] G. Olshanski, β€œThe problem of harmonic analysis on the
infinite-dimensional unitary group,” Journal of Functional Analysis, vol. 205, no. 2, pp. 464–524, 2003.
[3] D. Pickrell, β€œMeasures on infinite dimensional Grassmann
manifolds,” Journal of Functional Analysis, vol. 70, no. 2, pp.
323–356, 1987.
[4] S. Kerov, G. Olshanski, and A. Vershik, β€œHarmonic analysis
on the infinite symmetric group: a deformation of regular
representation,” Comptes Rendus de l’Académie des Sciences.
Series I, vol. 316, pp. 773–778, 1993.
[5] A. Borodin and G. Olshanski, β€œHarmonic analysis on the
infinite-dimensional unitary group and determinantal point
processes,” Annals of Mathematics, vol. 161, no. 3, pp. 1319–1422,
2005.
[6] E. Tomas, β€œOn Prohorov’s criterion for projective limits,” Operator Theory, vol. 168, pp. 251–261, 2006.
[7] Y. Yamasaki, β€œProjective limit of Haar measures on O(n),”
Research Institute for Mathematical Sciences, vol. 8, pp. 141–149,
1972/73.
[8] O. Lopushansky and A. Zagorodnyuk, β€œHardy type spaces
associated with compact unitary groups,” Nonlinear Analysis:
Theory, Methods and Applications, vol. 74, no. 2, pp. 556–572,
2011.
[9] N. Bourbaki, Integration II, Springer, Berlin, Germany, 2004.
[10] K. Floret, β€œNatural norms on symmetric tensor products of
normed spaces,” Note di Matematica, vol. 17, pp. 153–188, 1997.
[11] M. Reed and B. Simon, Methods of Modern Mathematical
Physics, Volume II, Academic Press, New York, NY, USA, 1975.
[12] W. Rudin, Function Theory in the Unit Ball of C𝑛 , Springer,
Berlin, Germany, 1980.
Advances in
Operations Research
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics
Volume 2014
The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at
http://www.hindawi.com
International Journal of
Advances in
Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com
Mathematical Physics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International
Journal of
Mathematics and
Mathematical
Sciences
Mathematical Problems
in Engineering
Journal of
Mathematics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Discrete Dynamics in
Nature and Society
Journal of
Function Spaces
Hindawi Publishing Corporation
http://www.hindawi.com
Abstract and
Applied Analysis
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014