Codage avec Information Adjacante (DPC : Dirty paper coding) et certaines de ses applications : Tatouage (Watermarking) MIMO broadcast channels Gholam-Reza MOHAMMAD-KHANI 1 Gel’fand and Pinsker’s channel Channel definition Encoder Channel capacity (Gel’fand and Pinsker 1980) 2 Gaussian case (DPC) Channel description (Dirty paper coding - Costa 1983) Coding 3 Gaussian case (DPC) Channel description (Dirty paper coding - Costa 1983) Coding S W Encoder U X 4 DPC Application for Watermarking Channel description (Dirty paper coding - Costa 1983) Watermarking Application : X : Mark (Weak Signal) , S : Host (Strong Signal) , Z : Noise Capacity Achieving for Mark Signal 5 Problem statement in MIMO BC Y H X Z i i r1 antennas i Y HX Z Tr E X . X H Tr Σ P Y1 Decoder #1 H1 W1 WK : Encoder X : : HK H YK Decoder #K t antennas p(y|x,H) rK antennas 6 Performance Criteria in BC Usual Criteria (Information Theory Aspects) : • Capacity Regions • Throughput (Sum Capacity) : New Criteria (Practical Aspects) : • BER Regions • Number of Satisfied Users (of Rates or of BER) 7 Some Relateds Works -Sato : Upperbound for Sum Capacity of BC - Cover [72] : Definition of Broadcast Channels - Weingarten & Shamai [06] : Capacity Region of Gaussian MIMO BC : - Caire & Shamai [03] + Viswanath & Tse [03] + Vishwanath & Goldsmith [03] + Yu & Cioffi [04]: Achievable Throughput of Gaussian MIMO BC DPC scheme : Achieve Sum Capacity and Capacity Region for MIMO BC 8 DPC and MIMO BC Y H X H X Z S Y H X Z i i i i i j i i r1 antennas i i i j Y HX Z Tr E X . X H Tr Σ P W1 WK Y1 Decoder #1 H1 : : Encoder : X HK H YK Decoder #K t antennas p(y|x,H) rK antennas 9 One Simple Case : Gaussian SISO BC Channel model and capacity region Superposition coding: 10 DPC vs TDMA Theorique Comparison : - Jindal & Goldsmith [05] : - Best performance of DPC on Sum Capacity Weingarten & Shamai [06] : Best Performance of DPC on Capacity Region Practical Comparison : - Belfiore [06] - Mohammad-Khani & Lasaulce [06] Sensibility to Channel Estimation BER Comparison 11 Structure of DPC schemes for Gaussian MIMO BCs Encoder structure W1 WK : Outer Encoder ~ X Inner Encoder X H Outer encoders Tomlinson Harashima precoder (THP) Scalar Costa’s scheme (SCS) Trellis coded quantization (TCQ) + turbo Nested lattices Outer encoders : Linear Pre-equalizers: MF, ZF, MMSE ZF-DPC MMSE-DPC 12 Structure of DPC schemes for Gaussian MIMO BCs Encoder structure 13 Comparison of outer coders 10 10 BER 10 10 10 10 10 0 THP SCS NL, A2 Hexagonal TCQ -1 -2 -3 -4 -5 -6 0 5 10 15 SNR 14 Inner coding Received signal structure y H . x z ; x B.u , B B1 BK y HB.u z W K ; E ui P i 1 2 pi xi K x Bi ui xi K i 1 i 1 ; yi i ,i ui i , j u j i , j u j zi , i 1,, K j i j i Possible approaches Linear precoding with successive coding using DPC as outer coding (the outer coder treats the interference) 2 i ,i pi Ri log1 2 1 i , j p j j i Linear pre-equalizer with independent outer coder (the outer coder does not treat the interference) 2 i ,i pi Ri log1 2 1 i , j p j j i Comments Inner coding space-time coding or beamforming Inner + outer coding implements a good multiple access scheme 15 MMSE-DPC Main features Optimum in the sense of the sum-capacity Two ways of implementing it: Yu & Cioffi 04 (GDFE precoder) Viswanath & Tse 03 (duality BC – MAC) Precoding filters depend on power allocation C sum sup log det I H † PH PA P opt diag p1,, pK Bk I 1 † † p j hj hj hk j k 1 K Numerical technique , k 1,, K Coding order: no effect on sum capacity (not true for the capacity region) Power allocation: we used the policy proposed by Boche & Jorswieck 04 (corresponding numerical algorithms converge) 16 ZF-DPC Main features Introduced by Caire & Shamai 03 (for single-antenna receivers) H G.Q B Q † yi gi ,i ui gi , j u j zi , i 1,, m j i d i gi ,i 2 ; m rank ( H ) zfdp m logd i R i 1 Waterfilling : m 1 d P i i 1 We generalized this scheme to multi-antenna receivers Simpler than MMSE-DPC but suboptimum in terms of sum-capacity Quasi-optimal in terms of sum-capacity, when H is full row rank Number of served users limited to rank of H Sensitive to coding order 17 Influence of the coding order: example Influence of coding order on Sum Capacity Influence of coding order on sum rate 12 3.5 5 0 0 H 3 2 0 1 1 2 10 3 Sum Capacity (bits) Sum Rate (bits) 2.5 2 TDMA Sato Upper Bound MIMO order (1,2,3) order (1,3,2) order (2,1,3) order (2,3,1) order (3,1,2) ZF-DPC : order (3,2,1) 1.5 1 0.5 0 0 0.2 0.4 0.6 SNR 0.8 8 TDMA MIMO Sato Bound Achieved by MMSE-DPC ZF-DPC : best order, (1,3,2) ZF-DPC : worst order , (3,2,1) 6 4 2 1 0 -10 -5 0 5 SNR(dB) 10 15 20 Conclusions Coding order has no effect on sum rate for MMSE-DPC Sum rate of ZF-DPC strongly depends on coding order Coding order can be optimized by a greedy algorithm [Tu & Blum03] If the coding order is not well chosen: TDMA can perform better than DPC (especially for low SNRs) 18 Conventional pre-equalizers Definitions H I H † . HH † ZF : B I H ( ) MMSE : MF : 1 B I H † .P.H BH † , si t r m yi ui zi , si r m m rank ( H ) 1 , i 1,, m Water-Filling H† Numerical Method to compute Sum Rate Comments The outer coder does not help to the interference cancellation task (separate coding) No successive coding = no coding order Most simple schemes when the CSI is known 19 Comparison of inner coders (1/2) Sum Capacity Comparison of BC-MIMO Sum Capacity Comparison of BC-MIMO 35 5 4.5 ZF-DPC Sato Upper Bound MMSE-DPC Sato : DP-Opt ZF-DPC MMSE MF ZF TDMA 30 25 3.5 Capacity (bits) Sum Capacity (bits) 4 3 2 0 H 1 1 2 2 1 0 Sum Rate Comparison 3 1 H 1 2 2 1 3 2.5 2 1.5 20 15 10 1 5 0.5 0 -25 -20 -15 -10 -5 SNR(dB) 0 5 10 0 -5 0 5 10 15 SNR(dB) 20 25 30 20 Comparison of inner coders (2/2) Region of achieved Rate Comparison 3 2 H 1 1 K rt 2 1.8 Region of Capacity TDMA 1.6 ZF-DP : order 1,2 ZF-DP : order 2,1 K rt 2 1 0.4 H 0.4 1 1.4 ZF MF P=10dB MMSE-DP : 1,2 1.2 P=7dB MMSE-DP : 2,1 MMSE data10 R2 1 2.5 0.8 Region of Capacity 0.6 TDMA ZF-DPC 2 0.4 ZF 0.2 MMSE MF 0 MMSE-DPC : 1,2 1.5 MMSE-DPC : 2,1 0 0.5 1 1.5 2 2.5 4 Sum Capacity R2 3 3.5 R1 Region of Capacity TDMA 3.5 ZF-DP : 1,2 ZF-DP : 2,1 1 ZF 3 MF MMSE-DP : 1,2 P=20dB MMSE-DP : 2,1 2.5 MMSE R2 Sum Capacity 0.5 2 1.5 0 1 0 0.5 1 1.5 R1 2 2.5 0.5 0 0 1 2 3 R1 4 5 6 21 Overall performance (1/2) Degraded channel (No need to inner coder) Y1 X Z1 X 1 X 2 Z1 Y2 X Z 2 X 1 X 2 Z 2 Application de TCQ pour un BC scalaire dégradé 2 utilisateurs E X 2 P , E Z12 N1 , E Z 22 N 2 P1 P ; P 2 1 .P ; 0 1 10 0 P=1 10 0 w2 P=20 BER 10 10 10 10 10 z2 -1 TCQ u2 -2 1 N1=0dB N2=N1+5dB -3 -4 -5 -6 0 P=20 P=1 P=20 P=1 mean : mean : user1 : user2 : P=20 P=1 P=20, SCS P=20, SCS 0.2 0.6 0.8 ŵ2 x TCQ u1 x1 1 P1 P1 N1 0.4 Viterbi Decoder z1 w1 user1 : user1 : user2 : user2 : y2 x2 y1 Viterbi Decoder ŵ1 1 beta 22 Overall performance (2/2) K r t 2, P 10dB BER 10 10 P=10dB 0 10 -1 10 Pe2 10 1 0. 4 H 0. 4 1 -2 10 0 -1 -2 ZF-DPC : user 1 ZF-DPC : user 2 ZF : user 1 ZF : user 2 10 MMSE : user 1 -3 10 MMSE : user 2 MF MMSE-DP MMSE ZF ZF-DP -3 MF : user 1 MF : user 2 MMSE-DP : user 1 MMSE-DP : user 2 THP: user1 THP :user2 10 10 -4 0 2 4 6 p1 8 10 -4 10 -4 10 -3 -2 10 Pe1 10 -1 10 0 23
© Copyright 2026 Paperzz