Efficient Solutions to the Decision Tree Problem Petros Pechlivanoglou, Nicholas Mitsakakis The Hospital for Sick Children, Toronto IHPME, University of Toronto THETA Collaborative, Toronto CADTH Symposium 2017 The Decision Tree • The most common decision modeling tool to be used for CEA purposes. The Decision Tree Terminal node (leaf) Chance node Decision node The Decision Tree Child node Parent node The Decision Tree Branch The Decision Tree Pathway The Decision Tree Depth Level 2 1 3 Calculate Expected Value EV = ? Calculate Expected Value EV = p1 · p3 · p7 · O1 Calculate Expected value EV = p1 · p3 · p7 · O1 + p1 · p3 · p8 · O2 Calculate Expected Value EV = p1 · p3 · p7 · O1 + p1 · p3 · p8 · O2 + …… + p2 · p6 · p14 · O8 Challenges with conventional EV EV = p1 · p3 · p7 · O1 + p1 · p3 · p8 · O2 + …… + p2 · p6 · p14 · O8 31 Operations •Computationally demanding = slow •Not a formal, general solution •Tedious to implement in computer programming •Efficiency important for large trees with PSA •Increased room for error Proposed Solution • Linear algebra/ elementary graph-theory based solutions – Faster – Applicable to trees with any shape/form – Sparse matrix computing solutions – Easily extended to extra dimensions (PSA) Calculate Expected Value v2.0 Create: •Matrices of connections between nodes for each level (Q ) •Vectors of probabilities P for each level •Vector of outcomes O •Linear algebra to multiply P, Q, O Calculate Expected Value v2.0 E7 E8 E9 E10 E11 E12 E13 E14 E1 E2 Q1 = [1 1], Q2 = E3 E4 E5 E6 E1 E2 1 1 0 0 0 0 1 1 P1 = [p1 p2] P2 = [p3 p4 p5 p6] , P3 = [p7 p8 p9 p10 p11 p12 p13 p14] EV = (Q1 * P1) x (Q2 * P2) x (Q3 * P3) x O Khatri-Rao Product , Q3 = E3 1 1 0 0 0 0 0 0 E4 0 0 1 1 0 0 0 0 E5 0 0 0 0 1 1 0 0 E6 0 0 0 0 0 0 1 1 Calculate Expected Value v3.0 Create: •Matrices of connections between terminal and nodes of each level (Z) •Vectors of probabilities for each level (P) •Vector of outcomes (O) •Use linear algebra to multiply Z, P, O Calculate Expected Value v3.0 E7 E8 E9 E10 E11 E12 E13 E14 E7 E8 E9 E10 E11 E12 E13 E14 E7 E8 E9 E10 E11 E12 E13 E14 E1 1 1 1 1 0 0 0 0 E3 1 1 0 0 0 0 0 0 E7 E2 0 0 0 0 1 1 1 1 E4 0 0 1 1 0 0 0 0 E8 E5 0 0 0 0 1 1 0 0 Z1 = Z2= E6 P1 = [p1 p2] 0 0 0 0 0 0 1 1 E9 Z3= E10 E11 E12 P2 = [p3 p4 p5 p6] , E13 P3 = [p7 p8 p9 p10 p11 p12 p13 p14] E14 EV = (P1 x Z1) ◦ (P2 x Z2) ◦ (P3 x Z3) x O Hadamart (element-wise) product 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 Simulation • Generate trees with varying levels/children nodes • Sample – Probabilities from symmetric Dir(1) – Outcomes from U(0,1) • Measure CPU Time (Conducted using R 3.3.2 on Intel® Core™ i7 32GB RAM) Simulation Results Conclusions • Conventional solution to EV of decision tree is intuitive but inefficient • Graph theory / linear algebra based solutions can structure the decision tree problem in a more efficient way. • The Hadamart product solution most efficient in programming-based decision tree models.
© Copyright 2026 Paperzz