Achenbach STA 2023 – Elementary Statistics Assignment 1 1. Chapter 1.1 # 11-16 10. Chapter 2.3 # 33-34 2. Chapter 1.2 # 11-16 11. Chapter 2.3 # 44 3. Chapter 1.3 # 10-15 12. Chapter 2.3 # 48 4. Chapter 2.1 # 14 13. Chapter 2.4 # 20 5. Chapter 2.1 # 24 14. Chapter 2.4 # 30 & 32 6. Chapter 2.1 # 40 15. Chapter 2.4 # 36 7. Chapter 2.3 # 7-10 16. Chapter 2.4 # 42 8. Chapter 2.3 # 11-14 17. Chapter 2.5 # 27-30 9. Chapter 2.3 # 20 18. Chapter 2.5 # 32 19. Complete the relative frequency and cumulative frequency columns of the frequency table below. Class 0-9 10-19 20-29 30-39 Frequency Relative Frequency Cumulative Frequency 17 21 26 31 Questions 20-22: At a large university 1000 students are enrolled in a statistics class. Their scores on the final exam have a bell-shaped distribution with a mean of 73 and a standard deviation of 8 points. Use the Empirical Rule to answer the following questions. 20. Determine (approximately) how many students scored 89 or more. 21. Determine (approximately) how many students scored less than 81. 22. Determine (approximately) how many students scored between 65 and 89. Achenbach The frequency table below (Source: http://www.censusscope.org) gives the number of males and females in each age group in Florida. 23. On the same axes, construct two frequency polygons, one depicting the information for Florida’s male population, the other depicting the information for Florida’s female population. Use increments of 100,000 for the vertical axis. You may use a technology tool if you wish. 24. Use the frequency table data to estimate the average age of Florida males, and the average age of Florida females. You may use a technology tool. 25. Use the frequency table data to estimate the standard deviation for the ages of Florida males, and the standard deviation of the ages of Florida females. You may use a technology tool. Florida Population by Age and Gender Age Extra Credit: 1. Chapter 2.4 # 10 & 12 Male Female Number Number 0-4 484,767 461,056 5-9 529,036 502,682 10-14 15-19 541,727 521,474 515,297 492,593 20-24 475,178 453,132 25-29 504,211 491,147 30-34 549,078 539,664 35-39 40-44 631,110 606,579 629,930 617,628 45-49 530,063 555,337 50-54 475,141 508,938 55-59 60-64 388,142 344,562 433,375 392,934 65-69 339,444 388,051 70-74 329,113 395,568 75-79 268,127 348,566 80-84 85+ 167,803 112,160 239,638 219,127 Achenbach STA 2023 – Elementary Statistics Assignment 2 1. Chapter 3.1 # 23-26 10. Chapter 3.4 # 36 & 38 2. Chapter 3.1 # 29-32 11. Chapter 3.4 # 40 3. Chapter 3.2 # 10 12. Chapter 3 Quiz p. 167 # 1 4. Chapter 3.2 # 20 13. Chapter 4.1 # 28 5. Chapter 3.2 # 22 14. Chapter 4.1 # 36 6. Chapter 3.3 # 14 15. Chapter 4.1 # 44 7. Chapter 3.3 # 24 16. Chapter 4.2 # 14 8. Chapter 3.4 # 12, 14, 16, 18 17. Chapter 4.2 # 22 9. Chapter 3.4 # 30 & 32 Problems 18-19: Refer to the following probability distribution. x P( x) 0 .2 1 .35 2 4 .05 18. Fill in the missing value in the P ( x ) row and find E ( x ) the expected value of x . 19. Find ( x ) , the standard deviation of x . Problems 20-23: A man has 9 black socks and 7 white socks in his drawer. In the dark, he chooses three socks at random so that he is sure to have a matching pair. 20. Find the probability that he chooses all white socks. 21. Find the probability that he chooses at least one white sock 22. Find the probability that he chooses 2 white socks and one black sock. 23. Find the probability that he chooses 3 socks of the same color. Achenbach Problems 24-25: In Powerball Lottery five white balls are drawn out of a drum with balls numbered 1 to 55 and one red ball out of a drum with red balls numbered 1-42. A player wins a prize as shown in the table below for matching the numbers on the white and red balls. Each ticket costs $1. (Source: www.powerball.com) 24. Show how to obtain the probabilities listed in the table for matching: 1 red ball only 3 white and 1 red 5 white balls 25. The Grand Prize jackpot for the Powerball Lottery for the May 31, 2008 drawing is $33 million. Use this value and the ones in the table to calculate the expected gain or loss on the purchase of a single Powerball ticket. + + + + + Grand Prize 1 in 146,107,962.00 $200,000 1 in 3,563,608.83 $10,000 1 in 584,431.85 $100 1 in 14,254.44 $100 1 in 11,927.18 $7 1 in 290.91 $7 1 in 745.45 $4 1 in 126.88 $3 1 in 68.96 The overall odds of winning a prize are 1 in 36.61. The odds presented here are based on a $1 play (rounded to two decimal places). Extra Credit: 1. Use the table above to determine how large the Powerball jackpot would have to be in order for the expected value of purchasing a ticket to be positive. 2. Chapter 3.3 # 25 Achenbach STA 2023 – Elementary Statistics Assignment 3 1. Chapter 5.1 # 48, 50, 52 11. Chapter 5.4 # 32 2. Chapter 5.1 # 58, 60, 62 12. Chapter 6.1 # 24 3. Chapter 5.2 # 8 13. Chapter 6.1 # 36 4. Chapter 5.2 # 18 14. Chapter 6.1 # 52 5. Chapter 5.2 # 26 15. Chapter 6.2 # 10 6. Chapter 5.3 # 24, 28, 30 16. Chapter 6.2 # 12 7. Chapter 5.3 # 40 17. Chapter 6.2 # 18 8. Chapter 5.3 # 48 18. Chapter 6.3 # 18 9. Chapter 5.4 # 5-8 19. Chapter 6.3 # 24 10. Chapter 5.4 # 22 20. Chapter 6.3 # 26 Problems 21-22: Airline industry research shows that the amount of luggage checked by a passenger has a mean of 35 lbs. with a standard deviation of 10 lbs. 21. An aircraft has 200 seats and a baggage weight limit of 7250 lbs. If all seats are filled, what is the probability that the amount of checked baggage for the 200 passengers exceeds the 7250 lb. limit? (Hint: if the limit is exceeded, what does this mean about the average amount of baggage each passenger checked?) 22. The airline is thinking about ordering an aircraft with 110 seats, and would like the probability of exceeding the baggage weight limit to be less than .02 when all seats are sold. What should the baggage weight limit be for the aircraft? Achenbach Questions 23-25: The table below summarizes the results of a recent poll by Pew Research (www.people-press.org) on media coverage of the 2008 Presidential Campaign. Survey data measuring public perceptions of news coverage was collected May 30th - June 2nd 2008 from a nationally representative sample of 1,002 adults. 23. Construct a 95% confidence interval for the percent of Americans who said the media does an excellent/good job of covering candidate backgrounds. 24. Construct a 98% confidence interval for the percent of Americans who said the media does a fair/poor job of covering positions on issues. 25. How many Americans would need to be surveyed to be 99% confident that the estimate of the percent of Americans who say the media does a excellent/good job of covering candidate debates will be within 2% of the actual value? Extra Credit: 1. Chapter 5.1 # 66 2. Chapter 5.4 # 38
© Copyright 2025 Paperzz