Video usage in MOOCs – an explorative study Carmen Zahn, Magdalena Mateescu, Jonas Kiener & Alessia Ruf University of Applied Sciences and Arts, Northwestern Switzerland Research Question: How do specific elements of videos influence the use of MOOCs and learning outcome? Theoretical Background: Rationale: Control over video information flow & sequencing = positive influences on human information processing Video functions influence learning outcomes in procedural learning (Schwan & Riempp, 2014) Video usage (especially rewind functions) influences learning outcomes in hypervideo-based learning (Zahn, Barquero & Schwan, 2004) Video length influences engagement in MOOCs (Guo, Kim & Rubin, 2014) Agenda ◮ Overview over the MOOC, the sample and subsample Research Question and Hypotheses ◮ Results ◮ Conclusion ◮ Agenda ◮ Overview over the MOOC, the sample and subsample Research Question and Hypotheses ◮ Results ◮ Conclusion ◮ MOOC: Introduction to Work Psychology MOOC Contents Basic knowledge and central concepts of work psychology in 10 Chapters • e.g. paradigms of work organization and business management; effects of work on humans; work motivation and satisfaction; leadership, etc. Learning goals: Basic understanding of psychological theories, research questions and methods (specific for work and organizational psychology); Knowledge about interrelations between work, health and well-being; Application of the new knowledge for a deep reflection of students`own life and work situation MOOC-Structure «x-MOOC» - 10 Chapters Each chapter with 1 video, readings and quiz «Meet the expert» online-session after Ch6 Participants : 2.299 persons enrolled 191 persons did not watch any video Sample size: 2.108 Research Question: How do specific elements of videos influence the use of MOOCs and learning outcome? Sample – Video Usage: Number of Persons per video ● 1.0 Einführung 2000 ● 1.1 Gegenstand der wissenschaftlichen Psychologie Anzahl Personen 1500 ● 1.2 Aufgaben der (Angewandten) Arbeitspsychologie ● 1.3 Was bedeutet Arbeit im Leben v on Menschen? ● 1.4 Auf welchen Grundannahmen beruht die Arbeitspsychologie? ● 2.0 Einführung: Paradigmen der Arbeitsgestaltung und des Betr iebmanagements 1000 ● 2.1 Ausdruck der Paradigmen der Arbeitsgestaltung, der Betr iebsorganisation und des Betr iebsmanagements ● 2.2 Paradigma des Taylorismus ● 2.3 Paradigma der Human Relations Be wegung ● 3.0 Einleitung: Job Enr ichment und Soziotechnischer Systemansatz ● 3.1 Herzberg und die Pittsb urgh−Studie / Job Enr ichment ● 3.2 der Soziotechnische Systemansatz der Arbeitsgestaltung, der Betr iebsorganisation und des Betr iebsmangements ● 3.3 Zusammenfassende Übersicht ● 4.0 Einleitung Arbeitstätigk eit und Arbeitshandlung ● 4.1 Tätigkeiten ● 4.2 die Arbeitshandlung ● 4.3 Struktur des Handelns, Teil 1 ● 4.4 ●Struktur des Handelns, Teil 2von Arbeit 1 5.0 ●Einleitung zur WirBeanspr kung 5.1 ●Belastung, uchung und uchungsfolgen 5.2 Ermüdung, Monotonie und Beanspr Sättigung ● 6.0 ●Einführung dieStressoren Wirkung der Arbeit 2 6.1 Stressinund ● 6.2 ●die Ressourcen 6.3 und Engagement ●Burnout 7.0 ●Einleitung 7.1 die Arbeitszufr iedenheit und Arbeitsmotiv ation ●Arbeitszufriedenheit 7.2 in und Motivation ●Arbeitszufriedenheit 7.3 ●Motivation und 7.4 ●Motivationsprozess (Vroom) 8.0 ●Einleitung zu Gr uppenarbeit und Arbeitsgr uppen 8.1Inhalt ●Gruppenarbeit, Arbeitsgr uppen 500 8.2 Typen von Gruppenarbeit und Partizipation ● 9.0 ●Einleitung zu Management und und FührDefinition ung 9.1 ●Management ... Herund kunft 9.2 ●Führungsstile Führ ungsaufgaben und Führ ungsinstrum 9.3 Transaktionaler Path−Goal−Ansatz ● 5.3 der Gesundheitsbegr iff 0 10 20 Videonummer ● 10.0 Einleitung zu psychologischen K onzepten und Ver ● 10.1 Die psychologische Arbeitsanalyse ● 10.2 Die MTO−Analyse ● 10.3 Die personenbez ogene Analyse un 30 40 Subsample: Persons who watched at least 70 % of Videos An ah Pe onen 400 200 % Mittelwert der angeschauten Videos M Mittel 600 S 0 0 10 20 Ange hau e V deo 30 40 Subsample characteristics 80 30 Mittelwert 60 count count 20 40 10 20 0 0 20 40 60 Alter 80 Männlich Weiblich Geschlecht Subsample: Country Teilstichprobe 70% angeschauete Videos SK − Slovakia NO − Norway MT − Malta LI − Liechtenstein LB − Lebanon ID − Indonesia HU − Hungary CN − China IT − Italy GR − Greece FR − France ES − Spain AT − Austria CH − Switzerland DE − Germany 0 25 50 75 count 10 0 12 5 Subsample Pre-Test: Intention to watch the lectures Alle Teilnehmer Teilstichprobe 70% angeschauete Videos 150 60 count count 100 50 40 20 0 0 alle die meisten ungefähr die Hälfte ein paar m2 keine alle die meisten ungefähr die Hälfteein paar m2 Agenda ◮ Overview over the MOOC, the sample and subsample Research Question and Hypotheses ◮ Results ◮ Conclusion ◮ Research Question: How do specific elements of videos influence the use of MOOCs and learning outcome? Specific Elements of MOOC-Videos investigated Folien Variables: Predictor: ⁃ Video length (min), ⁃ Number of embedded slides, ⁃ tips (yes/no) Dependent Variables ⁃ Video Activity: Relative (per minute) use of video functions: play, pause, forwards, rewind. ⁃ MOOC-Engagement: Video activity plus number of chapters worked on Quiz participated in Number of trials in quizzes Outcomes: Number of correct answers to quiz questions per video and per chapter relative to total number of questions posed General Hypotheses ◮ H1: Video features influence video activity H2: Video features influence on MOOC-engagement. ◮ H3: Video features influence on outcome. ◮ Predictor Variables: Predictor: ⁃ Video length (min), ⁃ Number of embedded Slides, ⁃ Tips (yes/no) Dependent Variables ⁃ Video Activity: Relative (per minute) use of video functions: play, pause, forwards, rewind. ⁃ MOOC-Engagement: Video activity plus number of chapters worked on Quiz participated in Number of trials in quizzes Outcomes: Number of correct answers to quiz questions per video and per chapter relative to total number of questions posed Video length ● c10_v2 20 ● c8_v3 ● c10_v4 ● c5_v3 ● c3_v3 ● c7_v3 ● c8_v2 ● c6_v4 15 ● c9_v4 ● c7_v5 ● c10_v3 ● c7_v2 ● c1_v5 ● c4_v2 Videodauer (min) ● c9_v2 ● c1_v2 ● c3_v2 ● c4_v3 ● c2_v3 ● c4_v4 ● c6_v3 ● c7_v4 ● c1_v3 ● c5_v2 ● c9_v3 10 ● c2_v2 ● c5_v4 ● c2_v4 ● c6_v2 ● c4_v5 ● c5_v1 ● c3_v4 5 ● c1_v1 ● c1_v4 ● c4_v1 ● c6_v1 ● c10_v1 ● c7_v1 ● c8_v1 ● c2_v1 0 ● c9_v1 ● c3_v1 10 20 Videonummer 30 40 Number of Slides 15 15 ● c10_v2 ● c10_v3 10 10 ● c3_v3 ● c5_v3 ● c8_v2 ● c9_v4 ● c10_v2 ● c10_v3 ● c9_v3 ● c1_v3 5 ● c1_v2 ● c2_v3 ● c2_v4 ● c3_v2 ● c2_v2 ● c6_v4 ● c4_v3 ● c4_v4● c5_v2 ● c4_v5 ● c1_v5 ● c4_v2 ● c1_v4 ● c8_v3 ● c7_v2 ● c5_v4● c6_v3 ● c1_v5 ● c1_v1 0 ● c2_v1 ● c3_v1 ● c4_v1 ● c8_v3 ● c7_v3 ● c5_v1● c5_v4 ● c6_v1 ● c7_v1 20 Videonummer 30 ● c7_v4 ● c9_v2 ● c8_v1● c9_v1 ● c4_v5 ● c10_v1 40 ● c9_v2 ● c9_v3 ● c2_v2 ● c6_v2 ● c6_v3 ● c9_v4 ● c3_v4 ● c5_v1 ● c10_v4 ● c7_v2● c7_v5 ● c3_v2 ● c3_v4 10 ● c8_v2 ● c6_v4 ● c4_v3 ● c1_v3 ● c1_v1● c1_v4 ● c2_v1 0 ● c5_v2 ● c2_v4 ● c1_v2 ● c10_v4 ● c7_v4 ● c7_v5 ● c4_v2 ● c3_v3 5 ● c7_v3 ● c6_v2 ● c4_v4 ● c2_v3 Anzahl Slides Anzahl Fragen/Video ● c5_v3 ● c3_v1 ● c8_v1● c9_v1 ● c4_v1 ● c6_v1 ● c10_v1 ● c7_v1 0 0 10 20 Videonummer 30 40 Dependent Variables: Predictor: ⁃ Video length (min), ⁃ Number of embedded Slides, ⁃ Tips (yes/no) Dependent Variables ⁃ Video Activity: Relative (per minute) use of video functions: play, pause, forwards, rewind. ⁃ MOOC-Engagement: Video activity plus number of chapters worked on Quiz participated in Number of trials in quizzes Outcomes: Number of correct answers to quiz questions per video and per chapter relative to total number of questions posed Data transformations ◮ Box-Cox Power Transformations to Multinormality: lambda = (0.24 1.27 -0.75) ◮ All variables after z-transformation Mitt Mittelwert N w MOOC m Method Mixed model with fixed and random effects ◮ R nlme Packet, siehe Pinheiro J, Bates D, DebRoy S, Sarkar D and R Core Team (2015). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-122, http://CRAN.R-project.org/package=nlme ◮ For details, please contact: [email protected] Agenda ◮ Overview over the MOOC, the sample and subsample Research Question and Hypotheses ◮ Results ◮ Conclusion ◮ Results ◮ H1: Video features influence video activity H2: Video features influence MOOC-engagement. ◮ H3: Video features influence outcome. ◮ H1: Video activity ◮ H1a: Video length influences video activity in negative way (longer videos lower activity; shorter videos higher activity) ◮ H1b: Video-tips influence video activity in a positive way (yes > no) ◮ H1c: Number of slides Video features influences video activity (unspecified) H1: Video features influence video activity ◮ Findings Aktive Nutzung: standardisierte ß−Koeffizienten Intercept ● Videodauer (z−skalier t) ● Tipp ● Slides (z−sklalier t) Videodauer*Tipp • H1a: The shorter the videos the higher the activity: ß = 0.13, t = -9.84, p < 0.001 • H1b: Video-tips (ja) influence activity in positive ways: ß = 0.22, t = 11.54, p < 0.001 ● ● Videodauer*Slides ● ● Tipp*Slides ● • H1c: No influence of slide number ● Videodauer*Tipp*Slides ● −0.2 −0.1 0.0 0.1 0.2 Bars denote CIs. ● ● • Significant interaction between video length, number of slides and tips H1: Video activity -- Negative influence of video length moderated by tips Results ◮ H1: Video features influence video activity H2: Video features influence MOOC-engagement. ◮ H3: Video features influence outcome. ◮ H2: MOOC-Engagement ◮ H2a: Video length influences MOOC-Engagement (Shorter videos, more engagement) ◮ H2b: Video-tips (y) vs. no tips(n) influence MOOC-Engagement ◮ H2c: Number of embedded slides influence MOOC-Engagement H2: MOOC-Engagement ◮ Findings MOOC−Engagement: standardisierte ß−Koeffizienten Intercept ● Videodauer (z−skalier t) ● Tipp ● Slides (z−sklalier t) ● Videodauer*Slides ● ● Videodauer*Tipp*Slides −0.3 • H2b: Tips (y) influence engagement in a negative way: ß = -0.16, t = -8.42, p< 0.001 ● Videodauer*Tipp Tipp*Slides • H2a: The shorter the videos the more engagement: ß=-0.17, t=12.77, p <0.001 ● −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 • H2c: Fewer slides more engagement: ß = -0.04, t = 3.36, p< 0.001 Bars denote CIs. ● • Significant interactions between video length, number of slides and tip. H2: MOOC-Engagement - negative influence of video length stronger for videos without tips • - Influence of number of slides moderated by tips Results ◮ H1: Video features influence video activity H2: Video features influence MOOC-engagement. ◮ H3: Video features influence outcome. ◮ H3: Outcome (Quiz) ◮ H3a: Video length influences outcomes (shorter videos better outcomes in quizzes) ◮ H3b: Video-tips (y) vs. no tips(n) influence outcome (tips (y) improve outcome). ◮ H3c: Number of slides influence outcome H3: Outcome ◮ Findings • H3a: Shorter videos better Faktisches Lernergebnis: standardisierte ß−Koeffizienten outcomes in quiz: ß=-0.19, t=-10.90, p <0.001 • H3b: Tips higher outcome: ß=0.18,t=-8.76, p <0.001 • H3c: Smaller number of slides influence outcome in positive way: ß=-0.03, t=-2.13, p <0.05 Intercept ● Engagement (z−skalier t) ● Videodauer (z−skalier t) ● Tipp ● Slides (z−sklalier t) ● Engagement*Videodauer ● Engagement*Tipp ● Videodauer*Tipp ● Engagement*Slides ● Videodauer*Slides ● Tipp*Slides ● Engagement*Videodauer*Tipp ● Engagement*Videodauer*Slides ● Engagement*Tipp*Slides ● Videodauer*Tipp*Slides Engagement*Videodauer*Tipp*Slides −0.4 ● ● −0.2 0.0 0.2 Bars denote CIs. 0.4 0.6 • Significant Interactions between video length, number of slides and tips, e.g., high ß for interaction video length and tips: ß=0.40,t=13.09, p <0.001 H3: Outcome Interaktion: Videodauer * Tipp Faktisches Lernergebnis (z−scores) 2 1 tip kein Tip Tip 0 −1 −2 −2 −1 0 Videodauer (z−scores) 1 2 Agenda ◮ Overview over the MOOC, the sample and subsample Research Question and Hypotheses ◮ Results ◮ Conclusion ◮ Tentative Conclusion: Hypothesis IV/DV a Video Length b Video tips c Number of Slides H1: Video activity Shorter videos, more active use If yes, more activity H1c - H2: MOOCEngagement Shorter videos more engagement If yes, less engagement Fewer slides, more engagement H3: Outcome Shorter videos better outcome In quizzes If yes, better outcome, Few slides , Beter outcomes Especially for videos without tips For longer videos Especially for Videos with tips ? Implications Outcome (Quiz): ⁃ shorter videos (related research) ⁃ tips for longer videos ⁃ not to many slides Bedienelemente: play, pause, forward, rewind, ... tip MOOC-Engagement: ⁃ short videos with few embedded slides ⁃ not necessarily provide tips Video mit Folien tip Gesamtstichprobe: Alter, Geschlecht 50 Mittelwert 40 200 30 20 100 10 0 0 20 40 Alter 60 80 Weiblich Männlich Geschlecht Anderes Gesamtstichprobe: Abschluss Ja, ich bin Vollzeitstudent/in bzw. Schüler/in. Ja, ich bin Teilzeitstudent/in. Nein, ich befinde mich in keinem Ausbildungsprogramm. count Gesamtstichprobe: In welchen Land wohnst du jetzt? VU − Vanuatu SK − Slovakia RU − Russia RS − Serbia PL − Poland PE − Peru NO − Norway NL − Netherlands MT − Malta LI − Liechtenstein LB − Lebanon KZ − Kazakhstan ID − Indonesia GB − United Kingdom EG − Egypt EC − Ecuador CA − Canada BR − Brazil BG − Bulgaria BE − Belgium AL − Albania MA − Morocco HU − Hungary CN − China IT − Italy GR − Greece FR − France ES − Spain AT − Austria CH − Switzerland DE − Germany count
© Copyright 2026 Paperzz