Max-plus approximations: from optimal control to template methods [email protected] INRIA and CMAP, École Polytechnique, CNRS ENSEEIHT, Toulouse May 12-14, 2014 Survey of work with Akian, Lakhoua, McEneaney, Qu, Sridharan Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 1 / 58 Templates Introduced in static analysis by Manna, Sankaranarayanan and Sipma (VMCAI’05) A template is a collection of vectors w1 , . . . , wp ∈ Rd . → sets parametrized by λ ∈ Rp , T (λ) = {x ∈ Rd , wi · x 6 λi , 1 6 i 6 p} Nonlinear templates, wi are now non-linear functions (eg quadratic forms), Adjé, SG, Goubault (ESOP’10), Adjé’s PhD T (λ) = {x ∈ Rd , wi (x) 6 λi , 1 6 i 6 p} Template methods developed/applied by several authors: Dang, Garoche, Gawlitza, Magron’s PhD (formal proof) . . . Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 2 / 58 A good idea often arises independently in different contexts Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 3 / 58 Max-plus basis methods Introduced by Fleming and McEneaney 00, developed by McEneaney, Akian, Lakhoua, SG, Dower, Qu, Sridharan, . . . A function f : Rd → R is approximated by f (x) ' Fα (x) := sup (wi (x) + αi ) 16i6p maxplus basis functions level sets −→ templates: S(Fα ) := {x | Fα (x) 6 0} = {x | wi (x) 6 −αi } = T (−α) . Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 4 / 58 This talk: survey of the maxplus basis methods in optimal control curse of dimensionality attenuation ↔ instance of dynamic templates pruning of maxplus bases ↔ compression of templates Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 5 / 58 Max-plus or tropical algebra In an exotic country, children are taught that: “a + b” = max(a, b) “a × b” = a + b So “2 + 3” = Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 6 / 58 Max-plus or tropical algebra In an exotic country, children are taught that: “a + b” = max(a, b) “a × b” = a + b So “2 + 3” = 3 Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 6 / 58 Max-plus or tropical algebra In an exotic country, children are taught that: “a + b” = max(a, b) “a × b” = a + b So “2 + 3” = 3 “2 × 3” = Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 6 / 58 Max-plus or tropical algebra In an exotic country, children are taught that: “a + b” = max(a, b) “a × b” = a + b So “2 + 3” = 3 “2 × 3” =5 Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 6 / 58 Max-plus or tropical algebra In an exotic country, children are taught that: “a + b” = max(a, b) “a × b” = a + b So “2 + 3” = 3 “2 × 3” =5 “5/2” = Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 6 / 58 Max-plus or tropical algebra In an exotic country, children are taught that: “a + b” = max(a, b) “a × b” = a + b So “2 + 3” = 3 “2 × 3” =5 “5/2” =3 Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 6 / 58 Max-plus or tropical algebra In an exotic country, children are taught that: “a + b” = max(a, b) “a × b” = a + b So “2 + 3” = 3 “2 × 3” =5 “5/2” =3 “23 ” = Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 6 / 58 Max-plus or tropical algebra In an exotic country, children are taught that: “a + b” = max(a, b) “a × b” = a + b So “2 + 3” = 3 “2 × 3” =5 “5/2” =3 “23 ” =“2 × 2 × 2” = 6 Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 6 / 58 Max-plus or tropical algebra In an exotic country, children are taught that: “a + b” = max(a, b) “a × b” = a + b So “2 + 3” = 3 “2 × 3” =5 “5/2” =3 “23 ” =“2 × 2 × 2” = 6 √ “ −1” = Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 6 / 58 Max-plus or tropical algebra In an exotic country, children are taught that: “a + b” = max(a, b) “a × b” = a + b So “2 + 3” = 3 7 0 2 “ ”= −∞ 3 1 “2 × 3” =5 “5/2” =3 “23 ” =“2 × 2 × 2” = 6 √ “ −1” =−0.5 Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 6 / 58 Max-plus or tropical algebra In an exotic country, children are taught that: “a + b” = max(a, b) “a × b” = a + b So “2 + 3” = 3 7 0 2 9 “ ”= −∞ 3 1 4 “2 × 3” =5 “5/2” =3 “23 ” =“2 × 2 × 2” = 6 √ “ −1” =−0.5 Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 6 / 58 Lagrange problem / Lax-Oleinik semigroup Z v (t, x) = t L(x(s), ẋ(s))ds + φ(x(t)) sup x(0)=x, x(·) 0 Lax-Oleinik semigroup: (St )t>0 , St φ := v (t, ·). Superposition principle: ∀λ ∈ R, ∀φ, ψ, St (sup(φ, ψ)) = sup(St φ, St ψ) St (λ + φ) = λ + St φ So St is max-plus linear. Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 7 / 58 Lagrange problem / Lax-Oleinik semigroup Z v (t, x) = t L(x(s), ẋ(s))ds + φ(x(t)) sup x(0)=x, x(·) 0 Lax-Oleinik semigroup: (St )t>0 , St φ := v (t, ·). Superposition principle: ∀λ ∈ R, ∀φ, ψ, St (“φ + ψ”) = “St φ + St ψ” St (“λφ”) = “λSt φ” So St is max-plus linear. Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 7 / 58 The function v is solution of the Hamilton-Jacobi equation ∂v ∂v = H(x, ) ∂t ∂x v (0, ·) = φ Max-plus linearity ⇔ Hamiltonian convex in p H(x, p) = sup(L(x, u) + p · u) u Hopf formula, when L = L(u) concave: v (t, x) = sup tL( y ∈Rn Stephane Gaubert (INRIA and CMAP) x −y ) + φ(y ) . t Max-plus approximations ENSEEIHT 8 / 58 The function v is solution of the Hamilton-Jacobi equation ∂v ∂v = H(x, ) ∂t ∂x v (0, ·) = φ Max-plus linearity ⇔ Hamiltonian convex in p H(x, p) = sup(L(x, u) + p · u) u Hopf formula, when L = L(u) concave: Z v (t, x) = “ G (x − y )φ(y )dy ” . Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 8 / 58 Classical Maxplus Expectation sup Brownian motion L(ẋ(s)) = (ẋ(s))2 /2 Heat equation: Hamilton-Jacobi equation: 1 ∂v 1 ∂v 2 ∂v = − ∆v = ∂t 2 ∂t 2 ∂x − 12 kxk2 exp(− 12 kxk2 ) Fenchel transform: R Fourier transform: exp(ihx, y i)f (x)dx supx hx, y i − f (x) inf or sup-convolution convolution See Akian, Quadrat, Viot 97 Duality & Opt. . . . Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 9 / 58 Max-plus basis / finite-element method Fleming, McEneaney 00-; Akian, Lakhoua, SG 04- Approximate the value function by a “linear comb.” of “basis” functions with coeffs. λi (t) ∈ R: v (t, ·) '“ X λi (t)wi ” i∈[p] The wi are given finite elements, to be chosen depending on the regularity of v (t, ·) Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 10 / 58 Max-plus basis / finite-element method Fleming, McEneaney 00-; Akian, Lakhoua, SG 04- Approximate the value function by a “linear comb.” of “basis” functions with coeffs. λi (t) ∈ R: v (t, ·) ' sup λi (t) + wi i∈[p] The wi are given finite elements, to be chosen depending on the regularity of v (t, ·) Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 10 / 58 Best max-plus approximation P(f ) := max{g 6 f | g “linear comb.” of wi } linear forms wi : x 7→ hyi , xi hyi , xi adapted if v is convex Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 11 / 58 Best max-plus approximation P(f ) := max{g 6 f | g “linear comb.” of wi } wi : x 7→ − C2 kxk2 + hyi , xi − C2 kxk2 + hyi , xi adapted if v is C -semi-convex, i.e. v + C kxk2 /2 convex Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 11 / 58 Best max-plus approximation P(f ) := max{g 6 f | g “linear comb.” of wi } cone like functions wi : x 7→ −C kx − xi k xi adapted if v is C -Lip Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 11 / 58 Max-plus basis propagation Max-plus linearity is essential in max-plus basis method: Vt ' Ṽt = sup λti + wi i Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 12 / 58 Max-plus basis propagation Max-plus linearity is essential in max-plus basis method: Vt ' Ṽt = sup λti + wi i Vt+τ ' Sτ [Ṽt ] Stephane Gaubert (INRIA and CMAP) dynamic programming principle Max-plus approximations ENSEEIHT 12 / 58 Max-plus basis propagation Max-plus linearity is essential in max-plus basis method: Vt ' Ṽt = sup λti + wi i Vt+τ ' Sτ [Ṽt ] = sup Sτ [λti + wi ] dynamic programming principle i Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 12 / 58 Max-plus basis propagation Max-plus linearity is essential in max-plus basis method: Vt ' Ṽt = sup λti + wi i Vt+τ ' Sτ [Ṽt ] = sup Sτ [λti + wi ] dynamic programming principle i = sup λti + Sτ [wi ] maxplus linearity i Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 12 / 58 Max-plus basis propagation Max-plus linearity is essential in max-plus basis method: Vt ' Ṽt = sup λti + wi i Vt+τ ' Sτ [Ṽt ] = sup Sτ [λti + wi ] dynamic programming principle i = sup λti + Sτ [wi ] maxplus linearity ' sup λti + S̃τ [wi ] semigroup approximation step i i Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 12 / 58 Max-plus basis propagation Max-plus linearity is essential in max-plus basis method: Vt ' Ṽt = sup λti + wi i Vt+τ ' Sτ [Ṽt ] = sup Sτ [λti + wi ] dynamic programming principle i = sup λti + Sτ [wi ] maxplus linearity ' sup λti + S̃τ [wi ] semigroup approximation step ' sup λt+τ + wi i maxplus projection step i i i Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 12 / 58 Max-plus basis propagation Max-plus linearity is essential in max-plus basis method: Vt ' Ṽt = sup λti + wi i Vt+τ ' Sτ [Ṽt ] = sup Sτ [λti + wi ] dynamic programming principle i = sup λti + Sτ [wi ] maxplus linearity ' sup λti + S̃τ [wi ] semigroup approximation step ' sup λt+τ + wi i maxplus projection step i i i In summary: VT (x) = {Sτ }N [V0 ] ' {P ◦ S̃τ }N [V0 ] . Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 12 / 58 The Lax-Oleinik semigroup St plays the role of the order-preserving functional of abstract interpretation. Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 13 / 58 Max-plus basis methods Several max-plus basis methods have been proposed: [Fleming,McEneaney 00]: A first development of max-plus basis method [Akian,SG,Lakhoua 06]: A finite element max-plus basis method [McEneaney 07]: A curse of dimensionality free method [McEneaney,Deshpande,SG 08], [Sridharan,James,McEneaney 10], [Dower,McEneaney 11], ...... Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 14 / 58 Maxplus finite element projector Define the max-plus scalar product hg |f i := sup f (x) + g (x), g ∈ G, f ∈ F. x∈X Two functions f and f˜ f 6 f˜ ⇔ hg |f i 6 hg |f˜i, ∀g ∈ G. Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 15 / 58 Maxplus finite element projector The Max-plus projector equals to PB [f ] = sup{f˜ ∈ span B : f˜ 6 f } = sup{f˜ ∈ span B : hg |f˜ i 6 hg |f i, g ∈ G}. Analogous to Petrov-Galerkin Method A finite set of basis functions B ⊂ F, a finite set of test functions Z ⊂ G ˜ ˜ ΠZ B [f ] := sup{f ∈ Span B : hz|f i 6 hz|f i, ∀z ∈ Z} Theorem ([Cohen,SG,Quadrat 96]) Z ΠZ B = PB ◦ P . Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 15 / 58 Example of max-plus finite element projector B = {−|x|2 , −|x ± 1.5|2 , −|x ± 3|2 , −|x ± 4|2 } π −Z = {|x|, |x ± π|, |x ± |} 2 f (x) = cos(x) Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 16 / 58 Example of max-plus finite element projector B = {−|x|2 , −|x ± 1.5|2 , −|x ± 3|2 , −|x ± 4|2 } π −Z = {|x|, |x ± π|, |x ± |} 2 f (x) = cos(x) P Z [f ] : Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 16 / 58 Example of max-plus finite element projector B = {−|x|2 , −|x ± 1.5|2 , −|x ± 3|2 , −|x ± 4|2 } π −Z = {|x|, |x ± π|, |x ± |} 2 f (x) = cos(x) PB ◦ P Z [f ] : Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 16 / 58 Max-plus finite element method Wh = span{w1 , . . . , wp } max-plus space of finite elements Zh = span{z1 , . . . , zq } max-plus space of test functions Substitute v t ∼ vht := sup16j6p λtj + wj in v t+τ = S τ v t , and take the scalar product with every zi , sup λjt+τ +hwj , zi i = sup λtj +hS τ wj , zi i 16j6q ∀1 6 i 6 q . 16j6q This is of the form Mλt+τ = K λt , M and K analogues of the mass and stiffness matrices, respectively. Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 17 / 58 Mλt+τ = K λt Need to compute λt+τ as a function of λt . The equation Mµ = K λt may not have a solution, so we take the greatest solution of Mµ 6 K λt , λt+τ = M ] K λt where M ] is the adjoint (it is a min-plus linear operator): (M ] ν)j = min −Mij + νi . 16i6q In summary: Approx. v t by vht := sup16j6p λth + w t where the λ0j are given, and λt+τ = min −hwj , zi i+ max hS τ wk , zi i+λtk j 16i6q 16k6p t = τ, 2τ, . . Zero-sum two player game ! Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 18 / 58 To compute λt+τ = min −hwj , zi i+ max hS τ wk , zi i+λtk t = τ, 2τ, . . . j 16i6q 16k6p we need to evaluate off line Mij = hwj , zi i = supx∈X wj (x) + zi (x) Kik = hzi , S τ wk i = supx∈X , u(·) zi (x) + Rτ 0 `(x(s), u(s)) ds + wk (x) 1. Typically, wj or zi are concave, say x 7→ p · x − x ∗ Ax with A positive semidefinite, so computing Mij is a convex programming problem (sometimes explicit formulæ). 2. Computing Kik is an optimal control problem, horizon τ is small, final and terminal rewards wj and zi nice, so convexity propagates ⇒ global optimum accessible by Pontryagin under suitable assumptions. Sometimes, Riccati! Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 19 / 58 1 Error estimates [Akian,SG,Lakhoua 06] T ) max kS τ [wi ] − S̃ τ [wi ]k∞,X τ i=1,...,p + max kVt − PB [Vt ]k∞,X t=0,τ,...,T + max kVt − P Z [Vt ]k∞,X kVT − ṼT k∞,X 6 (1 + t=0,τ,...,T Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 20 / 58 Error estimates [Akian,SG,Lakhoua 06] T ) max kS τ [wi ] − S̃ τ [wi ]k∞,X τ i=1,...,p + max kVt − PB [Vt ]k∞,X t=0,τ,...,T + max kVt − P Z [Vt ]k∞,X kVT − ṼT k∞,X 6 (1 + t=0,τ,...,T This also applies to [Fleming,McEneaney 00]: T kVT − ṼT k∞,X 6 (1 + ) max kS τ [wi ] − S̃ τ [wi ]k∞,X τ i=1,...,p + max kPB ◦ S̃ τ [wi ] − S̃ τ [wi ]k∞,X i=1,...,p Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 20 / 58 Error estimates Approximation of the semigroup (Euler scheme) S τ [wi ] ' S̃ τ [wi ] = wi + τ H(x, ∇wi ). When X is bounded, under some technical assumptions, max kS τ [wi ] − S̃ τ [wi ]k∞,X ∼ O(τ 2 ). i=1,...,p Maxplus projection error of a C -semiconvex function f kPB [f ] − f k∞,X where B = {− 12 (x − xi )> C (x − xi )}i=1,...,p . Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 21 / 58 Maxplus projection error: an upper bound Theorem ([Akian,SG,Lakhoua 06]) Let X be a compact convex subset of Rd and f be a C -semiconvex function and Lipschitz continuous of Lipschitz constant L, then kPB [f ] − f k∞,X 6 |C |ρ(X̂ ; x1 , . . . , xp ) diam X where X̂ = X + B(0, |CL | ) and ρ(X̂ ; x1 , . . . , xp ) is the maximal radius of the Voronoi cells of the space X̂ divided by the points {x1 , . . . , xp }. Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 22 / 58 Maxplus projection error: an upper bound Theorem ([Akian,SG,Lakhoua 06]) Let X be a compact convex subset of Rd and f be a (C − α)-semiconvex function and Lipschitz continuous of Lipschitz constant L, then kPB [f ] − f k∞,X Stephane Gaubert (INRIA and CMAP) ρ(X̂ ; x1 , . . . , xp )2 diam X 6 α Max-plus approximations ENSEEIHT 22 / 58 Maxplus projection error: an upper bound We have kPB [f ] − f k∞,X 6 O(ρ(X̂ ; x1 , . . . , xp )2 ) It is known (covering surface with discs [Hlawka 49, Rogers 64]) that: min ρ(X̂ ; x1 , . . . , xp ) ∼ O( 1 1 ), as p → +∞ pd Therefore, the minimal number of basis functions p() needed to obtain an error of order O() is bounded by 1 p() 6 O( d ) 2 . x1 ,...,xp Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 23 / 58 Minimal number of basis functions p() needed to obtain an error of order O() bounded by p() 6 O( 1 d 2 ) First generation maxplus methods (Fleming-McEneaney, Akian, SG, Lakhoua): → same complexity as Falcone’s grid based semilagrangean schemes (state of the art competitor) + theory of projection errors (explicit bounds). Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 24 / 58 Maxplus projection error: an asymptotic estimates Strong analogy between Covering a convex body by a circumscribed polytope with at most p faces Asymptotic estimates for best approximation of convex bodies by P.M.Gruber . Stephane Gaubert (INRIA and CMAP) Projecting a convex function into a max-plus linear subspace generated by at most p linear basis functions Max-plus approximations ENSEEIHT 25 / 58 Asymptotic estimates for best max-plus projection Analogous result of [Gruber 93, Gruber 07] Theorem ([SG,McEneaney,Qu 11]) Let X be a compact convex set and f ∈ C 2 (Rd : R) be a convex function such that f 00 (x) > 0, ∀x ∈ Rd . Then, min kPB [f ] − f k∞,X ∼ O( x1 ,...,xp min kPB [f ] − f k1,X ∼ O( x1 ,...,xp Stephane Gaubert (INRIA and CMAP) 1 2 ), as p → ∞ 2 ), as p → ∞ pd 1 pd Max-plus approximations ENSEEIHT 26 / 58 A negative result Corollary Minimal number of linear forms p() to reach an approximation of order O() is of order: 1 p() ∼ O( d ) 2 A negative result for the max-plus basis method Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 27 / 58 A negative result Corollary Minimal number of linear forms p() to reach an approximation of order O() is of order: 1 p() ∼ O( d ) 2 A negative result for the max-plus basis method and for the dual dynamic programming method. (if the value function is regular and strictly convex) Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 27 / 58 Asymptotic estimates for best max-plus projection Analogous result of [Gruber 93, Gruber 07] Theorem ([SG,McEneaney,Qu 11]) Under the same assumptions, as p → ∞, min kPB [f ] − f k∞,X ∼ x1 ,...,xp C1 p 2 d , min kPB [f ] − f k1,X ∼ x1 ,...,xp C2 2 pd , where C1 = α1 Z 1 (det(f 00 (x))) d+2 dx d+2 d X C2 = α2 Z 00 1 2 (det(f (x))) dx d2 X Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 28 / 58 Second generation maxplus methods McEneaney’s curse of dimensionality attenuation Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 29 / 58 Switched optimal control problem Infinite horizon switched optimal control problem [McEneaney 07]: Z ∞ 1 γ2 0 µ(t) V (x) = sup sup x(t) D x(t) − |u(t)|2 dt, 2 2 µ u 0 where . D∞ = {µ : [0, ∞) → {1, . . . , M} : measurable} , . k W = Lloc 2 ([0, ∞); R ) , and x(·) satisfies: ẋ(t) = Aµ(t) x(t) + σ µ(t) u(t), x(0) = x ∈ Rd , arising from H∞ robust control, nonconvex (D 1 , . . . , D M < 0). Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 30 / 58 McEneaney’s curse of dimensionality free method Semigroup approximation: Sτ ' S̃τ = sup Sτm m Stm is the semigroup associated to the control problem by letting the switching control µ equal to m ∈ {1, . . . , M}: Z t 1 γ2 m St [φ](x) = sup x(t)0 D m x(t) − |u(t)|2 dt + φ(x(t)). 2 u 0 2 ẋ(s) = Am x(s) + σ m u(s); x(0) = x ∈ Rd . Stm [φ] is a quadratic function if φ is. (Riccati) V ' VT = {Sτ }N [V0 ] ' {S̃τ }N [V0 ] = sup SτiN ◦ . . . Sτi1 [V0 ] . iN ,...,i1 Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 31 / 58 Arborescent propagation V ' VT = {Sτ }N [V0 ] ' {S̃τ }N [V0 ] = sup SτiN ◦ . . . Sτi1 [V0 ] . iN ,...,i1 V0 Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 32 / 58 Arborescent propagation V ' VT = {Sτ }N [V0 ] ' {S̃τ }N [V0 ] = sup SτiN ◦ . . . Sτi1 [V0 ] . iN ,...,i1 V0 Sτ1 [V0 ] Stephane Gaubert (INRIA and CMAP) ...... Max-plus approximations SτM [V0 ] ENSEEIHT 32 / 58 Arborescent propagation V ' VT = {Sτ }N [V0 ] ' {S̃τ }N [V0 ] = sup SτiN ◦ . . . Sτi1 [V0 ] . iN ,...,i1 V0 ...... Sτ1 [V0 ] Sτ1 Sτ1 [V0 ] ... Stephane Gaubert (INRIA and CMAP) SτM Sτ1 [V0 ] SτM [V0 ] Sτ1 SτM [V0 ] . . . SτM SτM [V0 ] Max-plus approximations ENSEEIHT 32 / 58 Arborescent propagation V ' VT = {Sτ }N [V0 ] ' {S̃τ }N [V0 ] = sup SτiN ◦ . . . Sτi1 [V0 ] . iN ,...,i1 V0 ...... Sτ1 [V0 ] Sτ1 Sτ1 [V0 ] ... Sτ1 . . . Sτ1 [V0 ] Stephane Gaubert (INRIA and CMAP) SτM Sτ1 [V0 ] SτM [V0 ] Sτ1 SτM [V0 ] . . . SτM SτM [V0 ] ...... Max-plus approximations SτM . . . SτM [V0 ] ENSEEIHT 32 / 58 Arborescent propagation V ' VT = {Sτ }N [V0 ] ' {S̃τ }N [V0 ] = sup SτiN ◦ . . . Sτi1 [V0 ] . iN ,...,i1 V0 ...... Sτ1 [V0 ] Sτ1 Sτ1 [V0 ] ... Sτ1 . . . Sτ1 [V0 ] SτM Sτ1 [V0 ] SτM [V0 ] Sτ1 SτM [V0 ] . . . SτM SτM [V0 ] ...... SτM . . . SτM [V0 ] Comput. complexity: O(M N d 3 ) ⇒curse of dimensionality free Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 32 / 58 Tree approximation + pruning Computational complexity: O(M N d 3 ) The method has been applied to solve approximately problems of dimension d = 4, number of switches M = 3, in [McEneaney 07] dimension d = 6, number of switches M = 6, in [McEneaney,Deshpande,SG 08] (with a semidefinite programming pruning technique) dimension d = 15, number of switches M = 6, in [Sridharan,James,McEneaney 10] (quantum optimal gate synthesis, SU(4)) Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 33 / 58 Introduction Switched infinite horizon optimal control problem Static HJ equation: H(x, ∇V ) = 0, ∀x ∈ Rd ; V (0) = 0 . where H(x, p) = sup m∈{1,...,M} Assumption (existence) Assumption Σ: Assumption contraction: 1 0 m xD x 2 + 12 p 0 Σm p + (Am x)0 p. 0 ≺ D m 4 cD Id , 0 ≺ Σm 4 cΣ Id , ∀m x 0 Am x 6 −cA |x|2 , ∀x ∈ Rd , ∀m. cA2 > cD cΣ . Σm = Σ, m = 1, . . . , M . D m > mD Id , mD cΣ > (cA − Stephane Gaubert (INRIA and CMAP) Max-plus approximations p cA2 − cD cΣ )2 . ENSEEIHT 34 / 58 Introduction Error bound Theorem (Zheng Qu, PhD 2013) Under Assumption existence and Assumption contraction, the computational complexity to reach an error of order is O(M − log()/ d 3 ) . Compare with O(1/d/r ) for a grid scheme with an error of order (∆x)r . Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 35 / 58 Introduction Take home message : invariant Finsler metrics on the cone of positive definite matrices the standard Riccati flow is a contraction in these metrics Ṗ = A0 P + PA + D − PΣP , Stephane Gaubert (INRIA and CMAP) Max-plus approximations D, Σ > 0 . ENSEEIHT 36 / 58 Introduction Thompson’s part metric C closed convex pointed cone in a Banach space C , x 6 y iff y − x ∈ C dT (x, y ) = inf{log α | α−1 x 6 y 6 αx} C = Rn+ , dT (x, y ) = k log x − log y k∞ . C = Sn+ , dT (A, B) = k spec log A−1/2 BA−1/2 k∞ = k log spec A−1 Bk∞ . Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 37 / 58 Introduction Invariant metrics on the cone of positive matrices Thompson’s part metric: dT (A, B) = k log spec A−1 Bk∞ , A, B 0 dT (UAU 0 , UBU 0 ) = dT (A, B) , U ∈ GL(n) Z 1 dT (A, B) = inf kγ̇(t)γ(t)−1 k∞ dt. γ 0 Riemannian metric: Z d2 (A, B) = inf γ 1 kγ̇(t)γ(t)−1 k2 dt 0 = k log spec A−1 Bk2 Invariant Finsler metric, ν convex positively homogeneous Z 1 dν (A, B) = inf ν(γ̇(t)γ(t)−1 )dt = ν(log spec A−1 B) γ Stephane Gaubert (INRIA and CMAP) 0 Max-plus approximations ENSEEIHT 38 / 58 Introduction Theorem ([Bougerol 93]) The standard Riccati operator (flow) is a strict contraction mapping in the invariant Riemannian metric. Theorem ([Liverani and Wojtkowski.94, Lawson and Lim 07]) The standard Riccati operator (flow) is a strict contraction mapping in Thompson’s part metric. Theorem ([Lee and Lim 07]) The standard Riccati operator (flow) is a strict contraction mapping in any invariant Finsler metric. The proof relies on the symplectic structure of the standard Riccati flow Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 39 / 58 Introduction Ingredient: contraction property of Riccati flow For all m ∈ {1, . . . , M}, the semigroup {Stm }t corresponds to the flow of an indefinite Riccati equation: Ṗ = (Am )0 P + PAm + D m + PΣm P . (1) sign changed, −PΣm P in Bougerol, Liverani, Wojtwoski. . . ! Theorem ([SG, Qu JDE14]) Under Assumption existence and Assumption contraction, there is P0 0 and α > 0 such that for all solutions P1 (·), P2 (·) : [0, T ] → (0, P0 ) of the indefinite Riccati flow (1) we have: dT (P1 (t), P2 (t)) 6 e −αt dT (P1 (0), P2 (0)), ∀t ∈ [0, T ] . Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 40 / 58 Introduction Contraction rate in Thompson’s part metric Denote by Mst (·) the flow associated to the ODE ẋ(t) = φ(t, x(t)) φ is a continuous function, C 1 in the second variable with bounded differential. Let U ⊆ int C be an open set satisfying λU ⊆ U for all λ ∈ (0, 1]. Theorem ([SG, Qu JDE14]) If the flow is order-preserving, then the best constant α such that dT (Mst (x1 ), Mst (x2 )) 6 e −α(t−s) dT (x1 , x2 ), s 6 t < tU (s, xi ) holds for all xi ∈ U, i = 1, 2, is given by −1 α := − sup λmax Dφs (x)x − φ(s, x) x . s∈J, x∈U Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 41 / 58 Introduction Arborescent propagation V ' VT = {Sτ }N [V0 ] ' {S̃τ }N [V0 ] = sup SτiN ◦ . . . Sτi1 [V0 ] . iN ,...,i1 V0 Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 42 / 58 Introduction Arborescent propagation V ' VT = {Sτ }N [V0 ] ' {S̃τ }N [V0 ] = sup SτiN ◦ . . . Sτi1 [V0 ] . iN ,...,i1 V0 Sτ1 [V0 ] Stephane Gaubert (INRIA and CMAP) ...... Max-plus approximations SτM [V0 ] ENSEEIHT 42 / 58 Introduction Arborescent propagation V ' VT = {Sτ }N [V0 ] ' {S̃τ }N [V0 ] = sup SτiN ◦ . . . Sτi1 [V0 ] . iN ,...,i1 V0 ...... Sτ1 [V0 ] Sτ1 Sτ1 [V0 ] ... Stephane Gaubert (INRIA and CMAP) SτM Sτ1 [V0 ] SτM [V0 ] Sτ1 SτM [V0 ] . . . SτM SτM [V0 ] Max-plus approximations ENSEEIHT 42 / 58 Introduction Arborescent propagation V ' VT = {Sτ }N [V0 ] ' {S̃τ }N [V0 ] = sup SτiN ◦ . . . Sτi1 [V0 ] . iN ,...,i1 V0 ...... Sτ1 [V0 ] Sτ1 Sτ1 [V0 ] ... Sτ1 . . . Sτ1 [V0 ] Stephane Gaubert (INRIA and CMAP) SτM Sτ1 [V0 ] SτM [V0 ] Sτ1 SτM [V0 ] . . . SτM SτM [V0 ] ...... Max-plus approximations SτM . . . SτM [V0 ] ENSEEIHT 42 / 58 Introduction Arborescent propagation V ' VT = {Sτ }N [V0 ] ' {S̃τ }N [V0 ] = sup SτiN ◦ . . . Sτi1 [V0 ] . iN ,...,i1 V0 ...... Sτ1 [V0 ] Sτ1 Sτ1 [V0 ] ... Sτ1 . . . Sτ1 [V0 ] SτM Sτ1 [V0 ] SτM [V0 ] Sτ1 SτM [V0 ] . . . SτM SτM [V0 ] ...... SτM . . . SτM [V0 ] Comput. complexity: O(M N d 3 ) ⇒curse of dimensionality free Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 42 / 58 Introduction The Pruning Problem Given f = sup φi , φi quadratic Rd → R i∈[p] and k p, find I ⊂ [p], |I | = k, with a best approximation of f by sup φi . i∈I Equivalent to template compression Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 43 / 58 Pruning algorithms Pruning operation: y x φ = sup(φgreen , φred , φviolet , φyellow , φblack , φblue ) Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 44 / 58 Pruning algorithms Pruning operation: y y x φ = sup(φgreen , φred , φviolet , φyellow , φblack , φblue ) Stephane Gaubert (INRIA and CMAP) x φ = sup(φgreen , φblack , φblue ) Max-plus approximations ENSEEIHT 44 / 58 Pruning algorithms Pruning algorithms Let Q1 , . . . , Qn be (d + 1) × (d + 1) symmetric matrices such that the quadratic functions are given by x T φi (x) = (x 1)Qi , i = 1, . . . , n. 1 1 Pairwise pruning φi > φj ⇔ Qi > Qj ⇒ Remove the function φj 2 Global pruning (nonconvex quadratic programming, NP hard) sup φi > φj ⇒ Remove the function φj i6=j Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 45 / 58 Pruning algorithms Pruning algorithms Importance metric sup φi > φj ⇔ νj := sup x i6=j φj (x) − supi6=j φi (x) 60 1 + |x|2 νj is called the importance metric of the function φj . Optimisation form νj = max ν ν 6 z > (Qj − Qi )z, ∀i 6= j z T z = 1. Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 46 / 58 Pruning algorithms Pruning algorithms Optimisation problem SDP relaxation νj = max ν ν 6 z > (Qj − Qi )z z T z = 1. ν j = max ν ν 6 tr((Qj − Qi )Z ) Z > 0, tr(Z ) = 1. Conservative pruning[McEneaney,Deshpande,SG 08]: ν j 6 0 ⇒ νj 6 0 ⇒: Remove the function φj . Over-pruning[McEneaney,Deshpande,SG 08]: sort ν j , keep at most k functions and prune the rest. Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 47 / 58 Pruning algorithms Pruning = facility location for Bregman dist. Discrete points X̃ = {x1 , . . . , xN } ⊂ Rd . The loss at point xk if we remove the function φj is: c(j, k) := sup φi (xk ) − sup φi (xk ) > 0 i i6=j Combinatorial optimisation problem Minimizing the average lost → discrete k-median problem: N X min [min c(j, k)] . |S|=k k=1 j∈S Minimizing the maximal lost → discrete k-center problem: min max [min c(j, k)] . |S|=k k=1,...,N j∈S Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 48 / 58 Pruning algorithms Pruning algorithms: distribution of witness points y x Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 49 / 58 Pruning algorithms Pruning algorithms: generation of witness points [SG,McEneaney,Qu 11] Optimisation problem SDP relaxation νj = max ν ν 6 z > (Qj − Qi )z z T z = 1. ν j = max ν ν 6 tr((Qj − Qi )Z ) Z > 0, tr(Z ) = 1. Randomization technique [Aspremont,Boyd 03]: For each function j, let Zj be the optimal solution of the SDP, generate random points of distribution N (0, Zj ). Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 50 / 58 Experimental results 0.7 0.35 ← sort upper bound tau=0.1 tau=0.05 ← J−V facility location 0.6 0.3 L(|H|) L(|H|) ← sort upper bound 0.5 ← J−V facility location 0.4 0.25 ← greedy facility location 0.2 ← sort lower bound 0.3 0.2 5 10 15 Iteration number 20 ← sort lower bound 0.15 ← greedy facility location 25 0.1 20 (a) τ = 0.1 25 30 35 40 Iteration number 45 50 (b) τ = 0.05 Figure: Comparison of the four pruning techniques by the evolution of the discrete L1 norm of backsubstitution error on the rectangle [−2, 2] × [−2, 2] of the x1 − x2 plane, with respect to the number of iterations. Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 51 / 58 Experimental results Table: CPU time τ =0.2, K =25 sort lower sort upper J-V p-d greedy Stephane Gaubert (INRIA and CMAP) Total time 1.04h 1.34h 1.38h 1.43h Propagation 1.85% 1.52% 1.45% 1.63% Max-plus approximations SDP 98.15% 98.43% 89.47% 97.84% Pruning 0.00% 0.05% 9.08% 0.53% ENSEEIHT 52 / 58 Experimental results Experimental results Instance : d = 6, M = 6 Backsubstitution error at point x : H(x, ∇V (x)). backsubstitution error at iteration 1, time step h=0.1 backsubstitution error at iteration 25, time step h=0.1 0.15 backsubstitution error H backsubstitution error H 2 1.5 1 0.5 0 −0.5 2 1 2 0 −0.05 −0.1 2 1 1 0 2 −2 Stephane Gaubert (INRIA and CMAP) x1−axis 0 −1 −1 −2 1 0 0 −1 x2−axis 0.1 0.05 x2−axis Max-plus approximations −1 −2 −2 x1−axis ENSEEIHT 53 / 58 Experimental results The method has been applied to a quantum optimal control of dimension 15 where the state space is the unitary group SU(4), dim 15, see [Sridharan,James,McEneaney 10]. M X √ H(U, p) = sup hp, −i{ vk Hk }Ui − v T Rv , |v |=1 k=1 for all p, U ∈ Mn (C). Here {H1 , . . . , HM } ⊂ Mn (C) generate the Lie algebra of the special unitary group SU(n). wi (X ) = hPi , X i + ci , ∀X ∈ Mn (C) , i = 0, . . . , m , P0 , P1 , . . . , Pm ⊂ U(n) unitary, c0 , c1 , . . . , cm ∈ R. Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 54 / 58 Experimental results SDP relaxation is exact δ̄0 = max min hPi − P0 , X i + ci − c0 . X ∈U(n) 16i6m (2) The following is a SDP relaxation of the importance metric δ̄1 = max min hPi − P0 , X i + ci − c0 . X ∈B(n) 16i6m (3) Theorem ([SG,Qu,Sridharan MTNS14]) δ̄0 = δ̄1 . Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 55 / 58 Experimental results 800 computation time (second) 700 bundle method cvx(sdpt3) 600 500 400 300 200 100 0 0 1 2 3 number of basis functions m 4 4 x 10 Figure: Computation time in seconds V.S. the number of basis functions m, obtained by the bundle method (blue curve) and by the interior point algorithm (green curve) for solving (3) Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 56 / 58 Experimental results Recent maxplus randomized method by Zh. Qu, almost sure convergence, experimentally much faster than McEneaney’s curse of dim scheme (103 speedup on quantum gate synthesis problem), but no cod estimate. Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 57 / 58 Experimental results Concluding remarks Max plus basis method = nonlinear templates Reason success: easy propagation of basis functions (eg Riccati) Generalizes to non-switched systems (approximate a general Hamiltonian by sup of LQ) Max-plus linearity of the Lax-Oleinik semigroup is used, extensions to second order PDE is Isaacs/game PDE are less practicable. Max-plus approx. → coarse but sometimes cod free estimates. In verification, happy with coarse bound (exact is undecidable) 6= In optimal control, error → 0. Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 58 / 58 Akian,Gaubert,Lakhoua 06. The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis. SICON. 47(2): 817-848, 2006 Garrett Birkhoff 57. Extensions of Jentzsch’s theorem Trans.Amer.Math.Soc.. 85: 219-227, 1957 Philippe Bougerol 93 Kalman filtering with random coefficients and contractions. J.Control Optim.. 31(4): 942-959, 1993 Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 58 / 58 W. H. Fleming and W. M. McEneaney. A max-plus-based algorithm for a Hamilton-Jacobi-Bellman equation of nonlinear filtering SICON, 38(3):683-710, 2000. Falcone,M. A numerical approach to the infinite horizon problem of deterministic control theory Appl. Math. Optim. 1987: 1, 1-13 Falcone, M. and Ferretti, R. Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations. Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 58 / 58 Numerische Mathematik 1994: 3, 315-344 Carlini, Elisabeth and Falcone, Maurizio and Ferretti, Roberto DAn efficient algorithm for Hamilton-Jacobi equations in high dimension. Computing and Visualization in Science 2004: 1, 15-29 F. Camilli, M. Falcone, P. Lanucara, and A. Seghini. A domain decomposition method for Bellman equations Contemp.Math. 1994: 1, 477-483 Maurizio Falcone, Piero Lanucara, and Alessandra Seghini. Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 58 / 58 A splitting algorithm for Hamilton-Jacobi-Bellman equations. Appl.Numer.Math. 1994: 15(2), 207-218 Simone Cacace, Emiliano Cristiani, Maurizio Falcone, and Athena Picarelli. A patchy dynamic programming scheme for a class of Hamilton-Jacobi-Bellman equations SIAM J.Sci.Comput.: 34(5): A2615-A2649, 2012. Jimmie Lawson and Yongdo Lim. A Birkhoff contraction formula with applications to Riccati equations. SIAM J.Control Optim.: 46(3): 930-951, 2007. Carlangelo Liverani and Maciej P. Wojtkowski. Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 58 / 58 Generalization of the Hilbert metric to the space of positive definite matrices. Pacific J.Math.: 166(2): 339-355, 1994. Hosoo Lee and Yongdo Lim. Invariant metrics, contractions and nonlinear matrix equations. Nonlinearity: 21(4): 857-878, 2008. Carmeliza Navasca and Arthur J. Krener. Patchy solutions of Hamilton-Jacobi-Bellman partial differential equations. Modeling, estimation and control 2007: 364, 251-270 W. M. McEneaney, A. Deshpande and S. Gaubert Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 58 / 58 Curse-of-Complexity Attenuation in the Curse-of-Dimensionality-Free Method for HJB PDEs Proc. of the 2008 ACC :4684-4690, 2008. S. Gaubert, W. M. McEneaney and Z. QU Curse of dimensionality reduction in max-plus based approximation methods: Theoretical estimates and improved pruning algorithms Proc. of the 2011 CDC :1054-1061, 2011. W. M. McEneaney A curse-of-dimensionality-free numerical method for solution of certain HJB PDEs SICON 46(4):1239-1076, 2007. W. M. McEneaney Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 58 / 58 Idempotent algorithms for discrete-time stochastic control through distributed dynamic programming Proc. of the 2009 CDC :1569-1574, 2009. J-M. Bony Principe du maximum, ingalit de harnack et unicit du problme de cauchy pour les oprateurs elliptiques dgnrs. Anna : 19:277-304, 1969. Haim Brezis On a characterization of flow-invariant sets Comm. Pure Appl. Math : 23:261-263, 1970. R.H.Martin Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 58 / 58 Differential equations on closed subsets of a Banach space Trans. Amer. Math. Soc. : 179: 399-414, 1973. H. Kaise , W. M. McEneaney Idempotent expansions for continuous-time stochastic control: compact control space Proc. of the 2010 CDC :7015-7020, 2010. P.M.Gruber Asymptotic estimates for best and stepwise approximation of convex bodies.i Forum Math. 5(5):281-297, 1993. P.M.Gruber Convex and discrete geometry Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 58 / 58 Springer, Berlin. 2007. E. Hlawka Ausfüllung und Überdeckung konvexer Körper durch konvexe Körper Monatsh. Math. 53(1):81-131, 1949. C. A. Rogers Packing and covering Cambridge University Press. 1964. A.Aspremont, S.Boyd Relaxations and Randomized Methods for Nonconvex QCQPs Stanford University. 2003. Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 58 / 58 H. J. Kushner and P. Dupuis. Numerical methods for for stochastic control problems in continuous time. Springer-Verlag, New York 2001. Crandall, M. G. and Lions, P.-L. Two approximations of solutions of Hamilton-Jacobi equations. Mathematics of Computation 1984. Dower, P.M. and McEneaney, W.M. A max-plus based fundamental solution for a class of infinite dimensional Riccati equations Proc. of the 2011 CDC :615 -620, 2011. Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 58 / 58 Sridharan, Srinivas and Gu, Mile and James, Matthew R. and McEneaney, William M. Reduced-complexity numerical method for optimal gate synthesis Phys. Rev. A 82(4):042319, 2010. G.Cohen, S.Gaubert and J-P. Quadrat Kernels,images and projections in dioids Proc. of WODES, 1996 W.M.McEneaney and J.Kluberg Convergence Rate for a Curse-of-Dimensionality-Free Method for a Class of HJB PDEs SIAM J. Control Optim., 48(5),3052-3079,2009. Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 58 / 58 S.Gaubert, Z.Qu The contraction rate in Thompson metric of order-preserving flows on a cone - application to generalized Riccati equations. J. Diff. Eq., 2014. Z.Qu Contraction of Riccati flows applied to the convergence analysis of a max-plus curse of dimensionality free method submitted to SIAM J. Control and Opt., 2012 Z.Qu Numerical methods for Hamilton-Jacobi equations and nonlinear Perron-Frobenius theory Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 58 / 58 PhD. thesis, 2013 S.Gaubert, Z. Qu, S. Sridharan. Bundle-based pruning in the max-plus curse of dimensionality free method MTNS’2014, to appear. Stephane Gaubert (INRIA and CMAP) Max-plus approximations ENSEEIHT 58 / 58
© Copyright 2026 Paperzz