Section 1.2 #10. Show that each of these conditional statements is a tautology by using truth tables. (a) [¬p ∧ (p ∨ q)] → q p T T F F q T F T F ¬p F F T T p∨q T T T F ¬p ∧ (p ∨ q) F F T F [¬p ∧ (p ∨ q)] → q T T T T (b) [(p → q) ∧ (q → r)] → (p → r) p T T T T F F F F q T T F F T T F F r T F T F T F T F p→q T T F F T T T T q→r T F T T T F T T (p → q) ∧ (q → r) T F F F T F T T p→r T F T F T T T T [(p → q) ∧ (q → r)] → (p → r) T T T T T T T T (c) [p ∧ (p → q)] → q p T T F F q T F T F p→q T F T T p ∧ (p → q) T F F F [p ∧ (p → q)] → q T T T T (d) [(p ∨ q) ∧ (p → r) ∧ (q → r)] → r p T T T T F F F F q T T F F T T F F r T F T F T F T F p∨q T T T T T T F F p→r T F T F T T T T q→r T F T T T F T T (p ∨ q) ∧ (p → r) ∧ (q → r) T F T F T F F F [(p ∨ q) ∧ (p → r) ∧ (q → r)] → r T T T T T T T T
© Copyright 2026 Paperzz