Dynamical Models for Herd Behavior in Financial Markets I. Introduction II. Model - Markets - Agents - Links III. Numerical results IV. Conclusions Sungmin Lee, Yup Kim Kyung Hee University, Seoul, Korea 1 I. Introduction Price return : R(ti ) ln P(ti ) ln P(ti 1 ) R / S&P 500 high frequency data of price return 2 V. Eguiluz, M. Zimmermann PRL v85,5659 (2000) Financial market agent link Information cluster 1 a : link a : Trade & isolated Financial crashes a 0.30 a 0.10 a 0.01 3 II. Model ○ Markets - Static : number of agents is fixed. (Canonical Ensemble) - Dynamic : number of agents is not fixed. (Grand Canonical Ensemble) Static market M. Zimmermann Dynamic market Join q Trade & leave 4 ○ Sort of Agents 1. Normal agent M. Zimmermann 2. Smart agent 5 ○ Links - Random attachment (Random Graph) - Preferential attachment (Scale Free network) Random graph 1 6 1 1 1 6 M. Zimmermann Scale free 2 18 36 1 2 2 2 36 1 18 6 ○ State of agent - inactive state [waiting l 0 ] - two active states [buying l 1 or selling l 1 ] ○ model rule - with probability q , one agent participates in the market 1 q - with , the network of links evolves dynamically in the following way j (1) an agent is selected at random j 1 a (2) with probability , the state of j remains inactive and,instead, a new link between agent and other agent a j (normal / smart agent , random graph / scale free link) (3) with , the state of becomes active by randomly s(ti ) choosing the state 1 or -1 , and instantly all agents belonging to the same cluster follow this same action ○ Measurement by imitation. is measured. And all agents in Aggregate state of the system : the active cluster leave si the s(ti )market. l l 1, N - Price index : P(t ) P(t ) exp( s / ) i 1 i i - Price return : R(ti ) ln P(ti ) ln P(ti 1 ) 7 III. Numerical results ○ Static market - Phase diagram 0.40 Normal / Random graph Normal / Scale free Smart / Random graph Smart / Scale free 0.35 0.30 a 0.25 Non-crash 0.20 0.15 0.10 0.05 Crash 0.00 0 2000 4000 6000 8000 10000 N ** Zimmermann : N 10 4 (Static market / Normal agent / Random graph) 8 ○ Dynamic market - The distribution of return R Normal agent 1 RG (a=0.3) RG (a=0.0005) SF (a=0.3) SF (a=0.0005) crash(manipulation) Prob(R) 0.1 q=0.1 0.01 1E-3 1E-4 1E-5 1E-5 1E-4 1E-3 R 0.01 0.1 1 Financial crash Prob(R) 0.1 RG (a=0.3) RG (a=0.01) SF (a=0.3) SF (a=0.01) q=0.5 0.01 1E-3 C.E 1E-4 G.C.E 1E-5 1E-5 1E-4 1E-3 R 0.01 0.1 9 Smart agent 1 RG (a=0.3) RG (a=0.0005) SF (a=0.3) SF (a=0.0005) No crash Prob(R) 0.1 q=0.3 0.01 1E-3 1E-4 1E-5 1E-5 1E-4 1E-3 R 0.01 0.1 1 Financial crash Prob(R) 0.1 RG (a=0.3) RG (a=0.01) SF (a=0.3) SF (a=0.01) q=0.5 0.01 1E-3 1E-4 1E-5 1E-5 1E-4 1E-3 R 0.01 0.1 10 - The distribution of the normalized return Normal agent 100000 RG (a=0.3) RG (a=0.0005) SF (a=0.3) SF (a=0.0005) 10000 10000 Frequency 1000 1000 q=0.1 100 -1.0 -0.5 0.0 0.5 1.0 100 10 1 -10 -8 -6 -4 -2 0 R/ 2 4 100000 8 10 RG (a=0.3) RG (a=0.01) SF (a=0.3) SF (a=0.01) 10000 Frequency 6 q=0.5 1000 100 10 1 -20 -10 0 10 20 R/ 11 Smart agent RG (a=0.3) RG (a=0.0005) SF (a=0.3) SF (a=0.0005) 10000 q=0.3 Frequency 1000 100 10 1 -10 -8 -6 -4 -2 0 R/ 2 4 100000 8 10 RG (a=0.3) RG (a=0.01) SF (a=0.3) SF (a=0.01) 10000 Frequency 6 q=0.5 1000 100 10 1 -20 -10 0 10 20 R/ 12 - Phase diagram X : no crash △: subtle a q 0.1 0.3 0.5 a q 0.1 0.3 0.5 ⊙ : crash(manipulation) ○ : financial crash 0.3 0.1 0.01 0.005 0.001 x x △ △ ⊙ ⊙ 0.0005 x △ ⊙ ⊙ ⊙ ⊙ Exponential decay x △ ○ Power law decay 0.3 0.1 0.01 x x x x <Normal agent> 0.005 0.001 0.0005 X △ △ x △ △ △ X x △ ○ <Smart agent> Exponential decay Power law decay 13 IV. Conclusions ◆ In static market, a herd behavior is enhanced by smart agents and scale free type links. ◆ We suggest a model for a dynamic herd behavior in financial market. ◆ In dynamic market, smart agents didn’t show financial crash at q qc . (0.3 qc 0.5) ◆ The distribution of return shows exponential decay at q qc . ◆ The distribution of return shows power law decay at q qc . 14
© Copyright 2026 Paperzz