7/25/2013 PROPOSITION ON SUBGROUPS Section 3.8 3.8.1Proposition: Let beasubgroupofthe group ,andlet , ∈ .Thenthefollowing conditionsareequivalent: (1) Cosets, Normal Subgroups, and Factor Groups (2) (3) (4) A COROLLARY 3.8.2Corollary: Let beasubgroupofthe group .Therelation~ definedon bysetting ~ if ,forall , ∈ ,isan equivalencerelationon . ; ⊆ ; ∈ ; ∈ . COSETS 3.8.3Definition: Let beasubgroupofthegroup ,andlet ∈ .Theset ∈ | forsome ∈ iscalledtheleftcoset of in determinedby . Similarly,therightcoset of in determinedby istheset ∈ | forsome ∈ . Thenumberofleftcosets of in iscalledthe index of in ,andisdenotedby : . COSET MULTIPLICATION AND THE GROUP OF LEFT COSETS 3.8.4Proposition: Let beanormal subgroupof ,andlet , , , ∈ .If and ,then . FACTOR GROUP 3.8.6Definition: If isanormalsubgroupof ,thenthegroupofleftcosets of iscalled thefactorgroup of determinedby .Itwill bedenotedby / . 3.8.5Theorem: If isanormalsubgroupof ,thenthesetofleftcosets of formsagroup underthecoset multiplicationgivenby forall , ∈ . 1 7/25/2013 FACTOR GROUPS AND HOMOMORPHISMS 3.8.7Proposition: Let beanormalsubgroupof . (a) Thenaturalprojection ∶ → / definedby ,forall ∈ ,isagrouphomomorphism, . andker (b) Thereisaone‐to‐onecorrespondencebetweenthe subgroupsof / andsubgroups of with ⊇ . Specifically,if isasubgroupof / ,then isthe correspondingsubgroupof ;if isasubgroupof with ⊇ ,then isthecorrespondingsubgroupof / . Underthiscorrespondence,normalsubgroups correspondtonormalsubgroups. THE FUNDAMENTAL HOMOMORPHISM THEOREM 3.8.9Theorem(Fundamental HomomorphismTheorem): Let , be groups.If ∶ → isahomomorphism with ker ,then ⁄ ≅ . EQUIVALENT CONDITIONS FOR A NORMAL SUBGROUP 3.8.8Proposition: Let besubgroupof . Thefollowingconditionsareequivalent. (1) isanormalsubgroupof ; (2) forall ∈ ; (3) forall , product ∈ , ; (4) forall , ∈ . ∈ , isthesettheoretic ∈ ifandonlyif SIMPLE GROUPS 3.8.10Definition: Thenontivial group is calledasimple groupifithasnoproper nontrivialsubgroups. 2
© Copyright 2026 Paperzz