實驗經濟學一:行為賽局論 Experimental Economics I: Behavioral Game Theory 補充材料:於現實驗證賽局理論:Swedish LUPI Lottery 賽局 Additional Material: “Testing Game Theory in the Field: Swedish Östling, Joseph Tao-yi Wang, LUPI Lottery Games” by Robert Eileen Chou & Colin Camerer 授課教師:國立臺灣大學 經濟學系 王道一教授(Joseph Tao-yi Wang ) 本課程指定教材: Colin E. Camerer, Behavioral Game Theory: Experiments in Strategic Interaction. New York: Russell Sage Foundation; New Jersey: Princeton UP, 2003. 【本著作除另有註明外,採取創用CC「姓名標示 -非商業性-相同方式分享」臺灣3.0版授權釋 出】 1 Population Uncertainty • Game theory often assumes fixed-N players • Not realistic in entry situations: – Voter turn-outs, – (Travel) congestion games, – Online auctions, etc. • Games with population uncertainty (Myerson, IJGT 1998, GEB 2000, etc.) 2 Poisson Games • Poisson Games: Assume N ~ Poisson(n) – Environmental Equivalence (EE) – Independence of Actions (IA) • Applied to voting games by Myerson (1998) • Contests: Myerson and Warneryd (2006) • Other applications? 3 Research Questions 1. Where is a Poisson game relevant? 2. How good does Poisson equilibrium fit the data (if there is such application)? 3. How did we get to equilibrium? Or, if it doesn’t, why don’t we get to equilibrium? 4 Join the Swedish LUPI Game • 49 games played daily: Jan. 29 – Mar. 18, 07’ • Each choose an integer from 1 to K=99999 • The person that chooses the lowest number that no one else does wins – LUPI: Lowest Unique Positive Integer • Fixed Prize: Earn 10,000 Euros if win, 0 if not. • Play against approximately 53,783 players – Assume “approximately 54k” is Poisson(53783) 5 Why Care? • LUPI is a part of the economy • The Swedish Limbo game • Lowest unique bid auctions (ongoing research by Eichberger & Vinogradov, Raviv & Virag and Rapoport et al) • Unique opportunity to test the theory • Close field-laboratory parallel • Full vs bounded rationality 6 Solving the LUPI Game • To win by picking k = I uniquely picked number k and nobody uniquely picked numbers 1~(k-1) • The mixed equilibrium is characterized by Nobody chose 1 Nobody uniquely chose 1 7 Nobody chose 2 The Unique Poisson Equilibrium 0.00025 1. Decreasing probabilities 2. Full support 3. Concave/convex 4. Convergence to uniform Probability 0.00020 0.00015 0.00010 0.00005 0.00000 1 10000 Number chosen (truncated at 10000) 8 Average Daily Frequencies (Wk 1) 150 100 50 0 2000 6000 4000 Number guessed 9 8000 0 10000 Average Daily Frequencies (Wk 3) 150 100 50 0 2000 4000 6000 Number guessed 10 8000 0 10000 Average Daily Frequencies (Wk 5) 100 80 60 40 20 0 2000 4000 6000 Number guessed 11 8000 0 10000 Average Daily Frequencies (Wk 7) 60 40 20 0 2000 4000 6000 Number guessed 12 8000 0 10000 Details about the Swedish Game • Players can bet (1 Euro each) up to 6 numbers from (1, 2, 3,…, 99999) • The (first) prize fluctuates slightly (guaranteed >10,000 Euro until 3/18/07) • Share prize if there is a tie • Smaller second and third prizes offered • Do people really think it’s Poisson? 13 Birth/Current Year Effects 3000 Total # guesses on number all days 1950 1940 2001 1930 2000 1990 1000 1960 1850 2007 1900 1970 1980 1950 2000 Number guessed 14 0 2050 Lab Experimental Design • • • • CASSEL at UCLA Choose between 1 and K=99 49 rounds, w/ winning number announced Scale down prize and population by 2,000: – Winning prize = USD $7.00 – n=26.9 (=53,783 / 2,000) – Variance is smaller than Poisson (due to a technical error; could have made it Poisson) 15 Aggregate Data in the Lab 0 20 500 Total # plays on number all rounds Total # plays on number all rounds 500 400 300 200 100 40 60 Number played 80 0 100 0 16 400 300 200 100 5 10 15 Number played 20 0 0 100 200 300 400 500 Aggregate Data in the Lab 0 5 10 Number chosen 17 15 20 Week-by-Week data in the Lab 15 15 10 10 5 5 0 2 4 6 8 10 12 14 16 18 0 20 2 4 6 8 Week 1 15 10 10 5 5 2 4 6 8 10 12 12 14 16 18 20 Week 3 15 0 10 14 16 18 0 20 Week 5 2 4 6 8 10 12 14 Week 7 18 16 18 20 Week-by-Week data in the Lab 90 • Not quite in equilibrium • 95 percent confidence intervals for last week in the lab 80 70 60 50 40 30 20 10 0 2 4 6 8 10 12 14 16 18 19 20 Learning in the Field • Winning numbers are the only feedback • Nobody except the winner is reinforced • Can update beliefs about other’s strategy since they don’t see the frequencies • But, people do respond to winning numbers! 20 Learning in the Field 2500 2000 Median of all past Median winner winning numbers until t-1 Median guess Median number today in t 1500 1000 500 0 1 7 13 19 25 31 37 43 49 21 Imitation Learning • Start with initial attractions A(1) – Backed out by empirically using initial data • Update attractions for a window (size W) close to the previous winning number • Why would this work at all? – The winning number indicates undershooting! • MLE estimates W=344 for field data 22 Learning in the Field (Week 1) -3 x 10 2.5 Swedish Field Data 2 Imitation Learning 1.5 1 Poisson Equilibrium 0.5 0 500 1000 150039 2000 2500 3000 23 3500 4000 4500 5000 5500 6000 Learning in the Field (Week 2) -3 x 10 2.5 2 1.5 1 0.5 0 500 1000 150039 2000 2500 3000 24 3500 4000 4500 5000 5500 6000 Learning in the Field (Week 3) -3 x 10 2.5 2 1.5 1 0.5 0 500 1000 150039 2000 2500 3000 25 3500 4000 4500 5000 5500 6000 Learning in the Field (Week 4) -3 x 10 2.5 2 1.5 1 0.5 0 500 1000 150039 2000 2500 3000 26 3500 4000 4500 5000 5500 6000 Learning in the Field (Week 5) -3 x 10 2.5 2 1.5 1 0.5 0 500 1000 150039 2000 2500 3000 27 3500 4000 4500 5000 5500 6000 Learning in the Field (Week 6) -3 x 10 2.5 2 1.5 1 0.5 0 500 1000 150039 2000 2500 3000 28 3500 4000 4500 5000 5500 6000 Learning in the Field (Week 7) -3 x 10 2.5 2 1.5 1 0.5 0 500 1000 150039 2000 2500 3000 29 3500 4000 4500 5000 5500 6000 How did this START? • Cognitive hierarchy (Camerer et al, 2004): Players have incorrect & heterogeneous beliefs. • Zero-step thinkers randomize uniformly • Higher-step thinkers best respond given the belief that other players are a mixture of lower-step thinkers • The type distribution is Poisson; players’ beliefs are a truncated Poisson distribution 30 How did this START? • We extend the standard model in two respects: • Number of players is random (Poisson); allows computation of expected payoffs • Players best-respond noisily using a power function • τ: Average number of thinking steps • λ: Degree of precision in best responses 31 Cognitive Hierarchy 0.25 0.20 0.15 0.10 0.05 0.00 8 5 4 3 2 k=0 k=1 k=2 k=4 k=3 6 7 9 10 1 32 11 12 13 20 1819 1617 15 14 τ = 1.5 λ=2 Initial Response in the Field (Week 1) Swedish Field Data Cognitive Hierarchy (τ = 1.80, λ=0.0034) Poisson Equilibrium 39 33 Quantal Respone Equilibrium • We maintain the assumption that N ~ Poisson (n). • Replace best responses with noisy (quantal) responses. • QRE: Players know both are doing quantal response (correct beliefs) • Can’t explain overshooting – Converges “UP” to equilibrium 34 Logit QRE 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 35 Poisson eq. QRE(250) QRE(50) QRE(1) Logit QRE Approx. from Below 0.12 0.1 Density 0.08 0.06 0.04 Equilibrium 0.02 200 150 0 100 2 4 6 8 10 50 12 14 36 16 18 1 Conclusion • • • • Observe a well-defined game (LUPI) played in the field Poisson equilibrium explains the data surprisingly well Imitation learning explains convergence CH (τ = 1.80) accounts for initial overshooting of low numbers • Shouldn’t we apply population uncertainty to other games? • LUBA (Least Unique Bid Auctions) 37 版權聲明版權聲明 頁碼 作品 版權標示 本作品轉載自 Microsoft Office 2011 多媒體藝廊, 依據 Microsoft 服務合約及著作權法第 46、52、65 條合理使 用。 1-37 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.7 依據著作權法第46、52、65條合理使用 7 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.8 依據著作權法第46、52、65條合理使用 0.00025 Probability 0.00020 8 0.00015 0.00010 0.00005 0.00000 1 10000 Number chosen (truncated at 10000) Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.19 依據著作權法第46、52、65條合理使用 150 100 50 9 來源/作者 0 2000 4000 6000 Number guessed 8000 0 10000 38 版權聲明版權聲明 頁碼 作品 版權標示 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.19 依據著作權法第46、52、65條合理使用 150 100 10 50 0 2000 4000 6000 Number guessed 8000 0 10000 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.20 依據著作權法第46、52、65條合理使用 100 11 80 60 40 20 0 2000 4000 6000 Number guessed 8000 12 0 10000 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.20 依據著作權法第46、52、65條合理使用 60 40 20 0 2000 4000 6000 Number guessed 8000 0 10000 Total # guesses on number all days 3000 14 1850 1900 2000 1000 1950 2000 Number guessed 來源/作者 0 2050 39 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.12 依據著作權法第46、52、65條合理使用 版權聲明版權聲明 頁碼 作品 版權標示 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), ,pp.24 依據著作權法第46、52、65條合理使用 Total # plays on number all rounds 500 16 0 400 300 200 100 20 40 60 Number played 80 0 100 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.24 依據著作權法第46、52、65條合理使用 Total # plays on number all rounds 500 16 0 400 300 200 100 5 10 Number played 15 20 0 200 300 400 500 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.24 依據著作權法第46、52、65條合理使用 0 100 Total/expected frequency 17 來源/作者 0 5 10 Number chosen 15 20 15 18 10 5 0 2 4 6 8 10 12 14 16 18 20 40 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), ,pp.26 依據著作權法第46、52、65條合理使用 版權聲明版權聲明 頁碼 作品 版權標示 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011) ,pp.26 依據著作權法第46、52、65條合理使用 15 10 18 5 0 2 4 6 8 10 12 14 16 18 20 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.26 依據著作權法第46、52、65條合理使用 15 10 18 5 0 2 4 6 8 10 12 14 16 18 20 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.26 依據著作權法第46、52、65條合理使用 15 18 10 5 0 2 4 6 8 10 12 14 16 18 來源/作者 20 19 41 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011),pp.26 依據著作權法第46、52、65條合理使用 版權聲明版權聲明 頁碼 作品 版權標示 Erik Mohlin, Robert Östling, and Joseph Tao-yi Wang, “Learning by Imitation in Games: Theory, Field, and Laboratory,” Oxford University, Department of Economics, Discussion Paper Series, pp.53. 依據著作權法第46、52、65條合理使用 2500 2000 21 Median winner until t-1 Median number in t 1500 1000 500 0 1 7 來源/作者 13 19 25 31 37 43 49 23 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.19 依據著作權法第46、52、65條合理使用 24 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.19 依據著作權法第46、52、65條合理使用 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.19 依據著作權法第46、52、65條合理使用 25 42 版權聲明版權聲明 頁碼 作品 版權標示 來源/作者 26 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.20 依據著作權法第46、52、65條合理使用 27 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.20 依據著作權法第46、52、65條合理使用 28 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.20 依據著作權法第46、52、65條合理使用 29 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.20 依據著作權法第46、52、65條合理使用 43 版權聲明版權聲明 頁碼 作品 版權標示 來源/作者 32 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.18 依據著作權法第46、52、65條合理使用 33 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.18 依據著作權法第46、52、65條合理使用 35 Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.16 依據著作權法第46、52、65條合理使用 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Poisson eq. QRE(250) QRE(50) QRE(1) Östling, Robert, Joseph Tao-yi Wang, Eileen Y. Chou, and Colin F. Camerer,"Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics,Vol.3, No.3, (2011), pp.16 依據著作權法第46、52、65條合理使用 36 44
© Copyright 2026 Paperzz