Linear State-Space Control Systems Prof. Kamran Iqbal College of Engineering and Information Technology University of Arkansas at Little Rock [email protected] Course Overview • State space models of linear systems • Solution to State equations • Controllability and observability • Stability, dynamic response • Controller design via pole placement • Controllers for disturbance and tracking systems • Observer based compensator design • Linear quadratic optimal control • Kalman filters, stochastic control • Linear matrix inequalities in control design • Course assessment Learning Objectives • Formulate and solve state-variable models of linear systems • Apply analytical methods of controllability, observability, and stability to system models • Controller synthesis via pole placement • Observer based compensator design • Formulate and solve the optimal control problem • Design optimal observers and Kalman filters • LMI based controller design Resources • Core Text: • Bernard Friedland, Control System Design: An Introduction to StateSpace Methods, Dover Publications, ISBN: 978-0486442785 • References: • Professor Raymond Kwong’s notes http://www.control.toronto.edu/people/profs/kwong/ • Professor Jongeun Choi’s notes http://www.egr.msu.edu/classes/me851/jchoi/lecture/ • Professor Perry Li’s notes http://www.me.umn.edu/courses/me8281/notes.htm • Astrom and Murray, Feedback Systems, An Introduction for Scientists and Engineers, Princeton University Press, 2012, http://www.cds.caltech.edu/~murray/amwiki/ Course Schedule Session Topic 1. State space models of linear systems 2. Solution to State equations, canonical forms 3. Controllability and observability 4. Stability and dynamic response 5. Controller design via pole placement 6. Controllers for disturbance and tracking systems 7. Observer based compensator design 8. Linear quadratic optimal control 9. Kalman filters and stochastic control 10. LM in control design State-Space Models of Linear Systems State-Variable Models • State variables – Energy variables, e.g., velocity (KE), position (PE) – Alternate variables, momentum (KE) – Flow and across variables, e.g., current, voltage • Dynamic Equations – Based on physical principles – Ordinary differential equations – Partial differential equations • State-variable equations – First order differential equation Transfer Function Models • Describe input-output relation • Restricted to LTI systems • Can be of lower order than actual system • Example: Let 𝑥 + 3𝑥 + 2𝑥 = 𝑢, 𝑦 = 𝑥 + 𝑥 𝐻 𝑠 = 1 𝑠+2 Example: dc Motor • Electrical subsystem 𝑒−𝑣 =𝐿 𝑑𝑖 𝑑𝑡 + 𝑅𝑖 𝜏 = 𝑘𝑖 𝑖 • Mechanical subsystem 𝑑𝜔 𝐽 𝑑𝑡 =𝜏 𝑣 = 𝑘𝜔 𝜔 Assume 𝐿=0 𝑘𝑖 = 𝑘𝜔 = 𝑘 DC Motor • Motor equation 𝐽 𝑑𝜔 𝑑𝑡 = 𝜏 = 𝑘𝑖 (𝑒 − 𝑘𝜔 𝜔)/𝑅 Or 𝑑𝜔 𝑑𝑡 Let 𝐾2 𝐽𝑅 Then = 𝑘2 − 𝜔 𝐽𝑅 = 𝛼, 𝑑𝜔 𝑑𝑡 𝐾 𝐽𝑅 + 𝑘 𝑒 𝐽𝑅 =𝛽 = −𝛼𝜔 + 𝛽𝑒 • State variables: 𝜃, 𝜔 𝑑 𝑑𝑡 0 𝜃 = 0 𝜔 0 1 𝜃 + 𝑒 𝛽 −𝛼 𝜔 DC Motor • State-space model Let 𝑥 = Then 𝑑𝑥 𝑑𝑡 𝜃 𝜔 = 𝑥 = 𝐴𝑥 + 𝐵 𝑢 Let 𝑦 = 𝜃 𝑦= 1 0 𝜃 = 𝐶𝑥 𝜔 • Transfer function model 𝜃 𝑠 𝑒 𝑠 = 𝛽 𝑠 𝑠+𝛼 , 𝜔 𝑠 𝑒 𝑠 = 𝛽 𝑠+𝛼 Example: Inverted Pendulum on Cart • Let – 𝑥 – cart displacement – 𝜃 – pendulum displacement – 𝑓 – applied force • Dynamic equations 𝑀 + 𝑚 𝑥 + 𝑚𝑙 cos 𝜃 𝜃 − 𝑚𝑙𝜃 2 sin 𝜃 = 𝑓 𝑚𝑙 cos 𝜃 𝑥 + 𝑚𝑙 2 𝜃 − 𝑚𝑔𝑙 sin 𝜃 = 0 • Linearization (𝜃 ≈ 0, sin 𝜃 ≅ 𝜃, cos 𝜃 ≅ 1) 𝑀 + 𝑚 𝑥 + 𝑚𝑙𝜃 = 𝑓 𝑚𝑙𝑥 + 𝑚𝑙 2 𝜃 − 𝑚𝑔𝑙𝜃 = 0 Inverted Pendulum on Cart • State variables: 𝑥, 𝜃, 𝑥 , 𝜃 • State equations: 𝑑 𝑑𝑡 0 𝑥 0 𝜃 = 0 𝑥 𝜃 0 0 0 𝑚 𝑔 𝑀 𝑀+𝑚 𝑔 𝑀𝑙 − 1 0 0 0 • Output variables: [𝑥, 𝜃] • Output equations: 𝑦 0 = 𝜃 0 0 0 1 0 𝑦 0 𝜃 1 𝑦 𝜃 0 𝑥 0 𝜃 + 1 𝑓 𝑥 𝑀 1 − 𝑀𝑙 0 𝜃 0 1 0 Inverted Pendulum on Motor-Driven Cart • Let – 𝑥 – cart displacement – 𝜃 – pendulum displacement – 𝑟 – wheel radius • Then, 𝑓 = 𝑓= 𝜏 , 𝑟 𝑘2 − 2𝑥 𝑅𝑟 𝜔= + 𝑥 𝑟 𝑘 𝑒 𝑅𝑟 • Dynamic equations 𝑀 + 𝑚 𝑥 + 𝑚𝑙𝜃 + 𝑥 + 𝑙𝜃 − 𝑔𝜃 = 0 𝑘2 𝑥 𝑅𝑟 2 = 𝑘 𝑒 𝑅𝑟 Inverted Pendulum on Motor-Driven Cart • Solve for accelerations 1 𝑥 𝑙 = 𝑀𝑙 −1 𝜃 −𝑚𝑙 𝑀+𝑚 𝑘2 − 𝑅𝑟 2 𝑥 𝑘 + 𝑅𝑟 𝑒 𝑔𝜃 • State variables: 𝑥, 𝜃, 𝑥 , 𝜃 State equations: 𝑑 𝑑𝑡 0 0 0 0 1 0 𝑥 0 1 2 𝜃 𝑚 = 0 − 𝑔 − 𝑘 2 0 𝑥 𝑀 𝑀𝑅𝑟 𝑀+𝑚 𝑘2 𝜃 0 𝑀𝑙 𝑔 0 𝑀𝑅𝑟 2 𝑙 Or 𝑥 = 𝐴𝑥 + 𝐵𝑢 0 𝑥 0 𝜃 𝑘 + 𝑒 𝑥 𝑀𝑅𝑟 𝑘 𝜃 − 𝑀𝑅𝑟𝑙 Example: Two-Axis Gyro • Rigid body dynamics (true in an inertial frame): 𝑑𝑝 𝑑𝑡 = 𝑓, 𝑑ℎ 𝑑𝑡 =𝜏 • Euler’s equations for a spinning body: 𝐽𝑥 𝜔𝑥𝐵 + 𝐽𝑧 − 𝐽𝑦 𝜔𝑦𝐵 𝜔𝑧𝐵 = 𝜏𝑥𝐵 𝐽𝑦 𝜔𝑦𝐵 + 𝐽𝑥 − 𝐽𝑧 𝜔𝑥𝐵 𝜔𝑧𝐵 = 𝜏𝑦𝐵 𝐽𝑧 𝜔𝑧𝐵 + 𝐽𝑦 − 𝐽𝑥 𝜔𝑥𝐵 𝜔𝑦𝐵 = 𝜏𝑧𝐵 Two-Axis Gyro • Assume that 𝑧-axis is the spin axis and 𝜔𝑧 is constant; let 𝐻𝑧 = 𝐽𝑧 𝜔𝑧 , (angular momentum); 𝐻 = 𝐻𝑧 1 − 𝐽𝑑 𝐽𝑧 gyro constant 𝐽𝑥 = 𝐽𝑦 = 𝐽𝑑 (diametrical moment of inertia) • Dynamic Equations: 𝜔𝑥𝐵 1 0 + 𝜔𝑦𝐵 𝐽𝑑 −𝐻 1 𝜏𝑥 𝐻 𝜔𝑥𝐵 = 𝜔 𝐽𝑑 𝜏 𝑦 𝑦𝐵 0 • Gyro equations including the spring and damping terms: 1 𝐵 𝜔𝑥𝐵 𝜔𝑦𝐵 + 𝐽𝑑 −𝐻 1 𝐵 𝐻 𝜔𝑥𝐵 − 𝐵 𝜔𝑦𝐵 𝐽𝑑 0 1 𝐾𝐷 0 𝜔𝑥𝐸 + 𝐵 𝜔𝑦𝐸 𝐽𝑑 −𝐾𝑄 𝐾𝑄 𝛿𝑥 1 𝜏𝑥 = 𝐾𝐷 𝛿𝑦 𝐽𝑑 𝜏𝑦 Two-Axis Gyro • Angular displacements (gyro pick off) are: 𝛿𝑥 = 𝜔𝑥𝐵 − 𝜔𝑥𝐸 𝛿𝑦 = 𝜔𝑦𝐵 − 𝜔𝑦𝐸 𝜏 ′ 𝜔 𝑥𝐸 • Define 𝑥 = 𝛿𝑥 , 𝛿𝑦 , 𝜔𝑥𝐵 , 𝜔𝑦𝐵 , 𝑢 = 𝜏𝑦𝑥 , 𝑥0 = 𝜔𝑦𝐸 Let 𝑏1 = 𝐴2 = 𝐵 , 𝐽𝑑 −𝑏1 𝑏2 𝑏2 = 𝐻 , 𝐽𝑑 𝑐1 = 𝐾𝐷 , 𝐽𝑑 𝑐2 = 𝐾𝑄 𝐽𝑑 −𝑏2 −𝑏1 0 𝐼 −𝐼 0 Then 𝑥 = 𝐴 𝐴 𝑥 + 𝑏 𝐼 𝑥0 + 𝛽𝐼 𝑢 1 2 1 Or 𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐸𝑥0 , 𝛽= 1 , 𝐽𝑑 −𝑐1 𝐴1 = 𝑐 2 −𝑐2 −𝑐1 , Two-Axis Gyro • The characteristic equation of the gyroscope is: 𝑠𝐼 − 𝐴 = 𝑠 2 + 𝑏1 𝑠 + 𝑐1 2 𝑏2 𝑠 + 𝑐2 2 • The precession and nutation frequencies are given as: 𝑠 = 𝛼𝑝 + 𝜔𝑝 , 𝛼𝑝 = − 𝑏1 𝑐1 −𝑏2 𝑐2 , 𝑏12 +𝑏22 𝜔𝑝 = 𝑏2 𝑐1 −𝑏1 𝑐2 𝑏12 +𝑏22 𝑠 = 𝛼𝑛 + 𝜔𝑛 , 𝛼𝑛 = 𝛼𝑝 − 𝑏1 , 𝜔𝑛 = 𝜔𝑝 + 𝑏2 • The transfer function of a free gyro is given as: 𝜔𝑥𝐸 𝛿𝑥 = 𝐻(𝑠) 𝜔 ; 𝐻 𝑠 = 𝛿𝑦 𝑦𝐸 𝑠 2 +𝑏1 𝑠+𝑐1 − 𝑏2 𝑠+𝑐2 𝑏2 𝑠+𝑐2 𝑠 2 +𝑏1 𝑠+𝑐1 𝑠 2 +𝑏1 𝑠+𝑐1 2 𝑏2 𝑠+𝑐2 2 Two-Axis Gyro • An ideal gyro is one with zero damping and stiffness • Then 𝐻 𝑠 = 𝑠 2 −𝑏2 𝑠 𝑏2 𝑠 𝑠2 𝑠 2 +𝑏1 𝑠+𝑐1 2 𝑏2 𝑠+𝑐2 2 • Assume a step input 𝜔𝑥𝐸 = 1, 𝜔𝑦𝐸 = 0 1 𝛿𝑥 𝑡 = 𝑏2 1 − cos 𝑏2 𝑡 2 1 𝛿𝑦 𝑡 = − 𝑏 2 1 𝑡 − 𝑏 sin 𝑏2 𝑡 2 Example: Aerodynamics • Define – – – – – – – – – – 𝛼 – angle of attack, 𝛽 – side slip angle 𝜙 – roll angle, 𝜃 – pitch angle, 𝜓 – yaw angle 𝑝 – roll rate, 𝑞 – pitch rate, 𝑟 – yaw rate 𝐿 – rolling moment, 𝑀 – pitching moment, 𝑁 – yawing moment 𝑋 – longitudinal force, 𝑌 – lateral force, 𝑍 – vertical force 𝑉 – aircraft speed, Δ𝑢 – change in speed 𝛿𝐸 – elevator deflection 𝛿𝐴 – aileron deflection 𝛿𝑅 – rudder deflection Aerodynamics • Longitudinal motion: Let 𝑥 = Δ𝑢, 𝛼, 𝑞, 𝑞 ′ ; 𝑢 = 𝛿𝐸 Then, Δ𝑢 = 𝑋𝑢 Δ𝑢 + 𝑋𝛼 𝛼 − 𝑔𝜃 + 𝑋𝐸 𝛿𝐸 𝛼= 𝑍𝑢 Δ𝑢 𝑉 + 𝑍𝛼 𝛼 𝑉 +𝑞+ 𝑍𝐸 𝛿 𝑉 𝐸 𝑞 = 𝑀𝑢 Δ𝑢 + 𝑀𝛼 𝛼 + 𝑀𝑞 𝑞 + 𝑀𝐸 𝛿𝐸 𝜃=𝑞 Constant-Altitude Autopilot • The simplified dynamics of an aircraft at constant speed are described as: 𝛼= 𝑍𝛼 𝛼 𝑉 +𝑞+ 𝑍𝐸 𝛿 𝑉 𝐸 𝑞 = 𝑀𝛼 𝛼 + 𝑀𝑞 𝑞 + 𝑀𝐸 𝛿𝐸 𝜃=𝑞 • Define Δℎ = (ℎ − ℎ0 )/𝑉 Then Δℎ = 𝛾 = 𝜃 − 𝛼 Aerodynamics • Lateral motion: Let 𝑥 = 𝛽, 𝑝, 𝑟, 𝜙, 𝜓 ′ ; 𝑢 = 𝛿A , 𝛿𝑅 ′ Then, 𝛽= 𝑌𝛽 𝑉 𝛽+ 𝑌𝑝 𝑉 𝑝+ 𝑌𝑟 𝑉 𝑔 𝑉 −1 𝑟+ 𝜙+ 𝑌𝐴 𝛿 𝑉 𝐴 𝑝 = 𝐿𝛽 𝛽 + 𝐿𝑝 𝑝 + 𝐿𝑟 𝑟 + 𝐿𝐴 𝛿𝐴 + 𝐿𝑅 𝛿𝑅 𝑟 = 𝑁𝛽 𝛽 + 𝑁𝑝 𝑝 + 𝑁𝑟 𝑟 + 𝑁𝐴 𝛿𝐴 + 𝑁𝑅 𝛿𝑅 𝜙=𝑝 𝜓=𝑟 + 𝑌𝑅 𝛿 𝑉 𝑅 Missile Dynamics • Define 𝑉 – missile velocity 𝛼𝑁 – normal acceleration 𝜃 – pitch angle 𝛾 – flight path angle • Assume that 𝑋𝑢 ≈ 0, 𝑍𝑢 ≈ 0, 𝑀𝛼 ≈ 0 Then 𝑍 𝑍𝛿 1 𝛼 + 𝑉 𝛿 𝑞 𝑀𝑞 𝑀𝛿 𝛼𝑁 = 𝑍𝛼 𝛼 + 𝑍𝛿 𝛿 𝛼 𝛼 = 𝑉 𝑞 𝑀𝛼 Missile Guidance • Define 𝜆 – line-of-sight angle 𝑧 – projected miss distance 𝑉 – missile speed 𝑉𝑇 – target speed 𝑇 − 𝑡 = 𝑇 – time to go • Then 1 𝜆 = 0 𝑉𝑇 2 𝜆 + 0 𝑎 𝑇 𝑁 𝑧 0 0 𝑧 i.e., the state equations are time varying
© Copyright 2026 Paperzz