ECE 6340 Intermediate EM Waves Fall 2016 Prof. David R. Jackson Dept. of ECE Notes 15 1 Attenuation Formula Waveguiding system (WG or TL): z S Waveguiding system E ( x, y, z ) E 0 ( x, y) e z E 0 ( x, y) e j z e z H ( x, y, z ) H 0 ( x, y) e z H 0 ( x, y) e j z e z At z = 0 : 1 * Pf (0) ( E 0 H 0 ) zˆ dS 2 S 1 * 2 Dz zˆ dS At z = Dz : Pf (Dz ) ( E 0 H 0 ) e 2 S 2 Attenuation Formula (cont.) Hence Pf (Dz ) Pf (0) e2 Dz Re Pf (Dz ) Re Pf (0) e2 Dz so Pf (Dz ) Pf (0) e2 Dz If Dz 1 Pf (Dz ) Pf (0) (1 2 Dz ) Pf (0) 2 Dz Pf (0) 3 Attenuation Formula (cont.) Pf (Dz ) Pf (0) 2 Dz Pf (0) so z 0 Pf (0) Pf (Dz ) 2 Dz Pf (0) z Dz S From conservation of energy: Pf (0) Pf (Dz ) Dz Pd (Dz / 2) l where Pd l ( z ) power dissipated per length at point z 4 Attenuation Formula (cont.) Hence Dz Pd l (Dz / 2) 2 Dz Pf (0) As Dz 0: Pd l (0) 2 Pf (0) Note: Where the point z = 0 is located is arbitrary. 5 Attenuation Formula (cont.) General formula: l Pd ( z0 ) 2 Pf ( z0 ) This is a perturbational formula for the conductor attenuation. The power flow and power dissipation are usually calculated assuming the fields are those of the mode with PEC conductors. z0 Pf ( z0 ) 6 Attenuation on Transmission Line Attenuation due to Conductor Loss c The current of the TEM mode flows in the z direction. J sz Pd l 2 Pf z CA C CA CB CB L Dz 7 Attenuation on Line (cont.) Power dissipation due to conductor loss: Pd 1 Z0 I 2 2 (Z0 is assumed to be approximately real.) 1 1 2 Rs J sz dS Dz S 2 1 1 (Dz ) Rs J sz Dz 2 C Power flowing on line: Pf l 1 Rs J sz 2 C 2 2 dl dl S Dz CA A I C= CA+ CB B CB 8 Attenuation on Line (cont.) Hence Rs 1 c 2 J sz 2Z 0 I CA CB 2 dl 9 R on Transmission Line R Dz LDz I CDz GDz Dz Ignore G for the R calculation ( = c): c Pd l 2 Pf 1 2 Pd R I 2 1 2 Pf Z 0 I 2 l 10 R on Transmission Line (cont.) We then have R c 2 Z0 Hence R c (2 Z 0 ) Substituting for c , 1 R Rs 2 I C J sz (l ) dl 2 11 Total Attenuation on Line Method #1 c d d TEM When we ignore conductor loss to calculate d, we have a TEM mode. k zTEM j d k k jk so Hence, d k c k 12 Total Attenuation on Line (cont.) Method #2 Re Re ( R j L)(G j C ) where R c (2 Z 0 ) c G C c The two methods give approximately the same results. 13 Example: Coax Coaxial Cable z I a A I b r B Rs 1 c 2 J sz 2Z 0 I C A A) B) J sz 2 dl CB J sz 2 dl I 2 a I J sz 2 b 14 Example (cont.) Hence 2 2 2 Rs 1 2 I I c a d b d 2 2 b 2 Z 0 I 0 2 a 0 Rs 1 1 2 Z 0 2 a 2 b Also, 0 b Z0 ln 2 r a Hence b r 1 Rs a c b b 2 ln 0 a (nepers/m) 15 Example (cont.) Calculate R: R c (2 Z 0 ) Rs 1 1 (2 Z 0 ) 2 Z 0 2 a 2 b Rs 1 1 2 a b 1 1 2 a b 1 16 Example (cont.) 1 1 R 2 a 2 b This agrees with the formula obtained from the “DC equivalent model.” (The DC equivalent model assumes that the current is uniform around the boundary, so it is a less general method.) b a DC equivalent model of coax 17 Internal Inductance An extra inductance per unit length DL is added to the TL model in order to account for the internal inductance of the conductors. This extra (internal) inductance consumes imaginary (reactive) power. The “external inductance” L0 accounts for magnetic energy only in the external region (between the conductors). This is what we get by assuming PEC conductors. L L0 DL Internal inductance L0 Dz DL Dz R Dz C Dz G Dz 18 Skin Inductance (cont.) Imaginary (reactive) power per meter consumed by the extra inductance: 1 PI DL I 2 Circuit model: Skin-effect formula: L0 Dz 2 1 PI X s J sz 2 C A CB DL Dz R Dz C Dz Equate 2 dl I G Dz 19 Skin Inductance (cont.) Hence: 1 1 1 DL X s 2 2 2 I 1 1 Rs 2 2 I J sz J sz 2 dl C A CB 2 dl C A CB 1 R 2 20 Skin Inductance (cont.) 1 1 DL R 2 2 Hence DX R or DL R 21 Summary of High-Frequency Formulas for Coax Assumption: << a HF a 1 2 a HF b 1 2 b R R DX DX HF a HF b 1 DL 2 a R HF RaHF RbHF HF a 1 DL 2 b HF DLHF DLHF D L a b HF b 22 Low Frequency (DC) Coax Model At low frequency (DC) we have: R DC RaDC RbDC DC DLDC DLDC D L a b DC a R 1 a Derivation omitted t=c-b a b DLDC b c 2 DC b R DL DC a 1 2 bt 0 8 4 c c ln 2 2 0 b 3 c b 2 2 2 2 c 2 b 2 4 c b 23 Tesche Model This empirical model combines the low-frequency (DC) and the high-frequency (HF) skin-effect results together into one result by using an approximate circuit model to get R() and DL(). F. M. Tesche, “A Simple model for the line parameters of a lossy coaxial cable filled with a nondispersive dielectric,” IEEE Trans. EMC, vol. 49, no. 1, pp. 12-17, Feb. 2007. Note: The method was applied in the above reference for a coaxial cable, but it should work for any type of transmission line. (Please see the Appendix for a discussion of the Tesche model.) 24 Twin Lead y Twin Lead a x h Assume uniform current density on each conductor (h >> a). DC equivalent model y a x h 1 1 R 2 a 2 a 25 Twin Lead y Twin Lead a x h 1 1 1 R 2 a 2 a a or Rs R a (A more accurate formula will come later.) 26 Wheeler Incremental Inductance Rule y n̂ x A 1 R Rs 2 I C J sz (l ) dl 2 B Wheeler showed that R could be expressed in a way that is easy to calculate (provided we have a formula for L0): 1 L0 R Rs 0 n L0 is the external inductance (calculated assuming PEC conductors) and n is an increase in the dimension of the conductors (expanded into the active field region). H. Wheeler, "Formulas for the skin-effect," Proc. IRE, vol. 30, pp. 412-424, 1942. 27 Wheeler Incremental Inductance Rule (cont.) The boundaries are expanded a small amount Dn into the field region. n̂ y Field region x Dn A B PEC conductors L0 = external inductance (assuming perfect conductors). 1 L0 R Rs 0 n 28 Wheeler Incremental Inductance Rule (cont.) Derivation of Wheeler Incremental Inductance rule 1 R Rs 2 I C y n̂ J sz (l ) dl Field region (Sext) 2 x Dn B A 1 2 WH L0 I 4 2 1 WH 0 H dS 4 Sext L0 02 I Hence Sext H dS 2 DL0 Dn We then have DL0 02 Dn I C H dl 2 0 I 2 PEC conductors C 0 I 2 2 H dl C 2 J sz (l ) dl 29 Wheeler Incremental Inductance Rule (cont.) 1 R Rs 2 I C y n̂ J sz (l ) dl Field region (Sext) 2 x Dn B A PEC conductors From the last slide, L0 02 n I 2 J sz (l ) dl C 1 I 2 J sz (l ) dl C 2 1 L0 0 n Hence 1 L0 R Rs n 0 30 Wheeler Incremental Inductance Rule (cont.) Example 1: Coax 0 b L0 ln 2 a L0 L0 L b 1 0 0 n a b 2 a 1 1 0 2 a b 1 L0 R Rs n 0 a b 1 1 1 0 b 1 b 2 a 2 a a 1 1 R Rs 2 a 2 b 31 Wheeler Incremental Inductance Rule (cont.) y Example 2: Twin Lead 0 , 0 a x h From image theory (or conformal mapping): 1 C 0 1 h cosh 2a L0C 0 1 h L0 cosh 2a 0 1 h Z 0 cosh 2a Z0 0 h ln , a h a 32 Wheeler Incremental Inductance Rule (cont.) y Example 2: Twin Lead (cont.) 0 1 h L0 cosh 2a Note: By incrementing a, we increment both conductors simultaneously. 0 , 0 a x h h L0 L0 0 0 0 1 h 1 2a 1 h cosh 2 a2 n a a a h 2 2a h 2 1 1 2a 2a 1 L0 R Rs 0 n h 1 2a R Rs a h 2 1 2a 33 Wheeler Incremental Inductance Rule (cont.) y Example 2: Twin Lead (cont.) a x Summary 0 1 h Z 0 cosh 2a h 1 2a R Rs a h 2 1 2a h C 0 L0 1 1 h cosh 2a 0 h cosh 1 2a G C tan 34 Attenuation in Waveguide We consider here conductor loss for a waveguide mode. S c A waveguide mode is traveling in the positive z direction. Dz C Pd Sc z l 2 Pf Pd l 1 1 2 Rs J s dS Dz Sc 2 1 Rs J s 2 C 2 dl 35 Attenuation in Waveguide (cont.) or Pd l C 1 2 ˆ Rs n H dl 2 Power flow: 1 Pf Re ( Et Ht* ) zˆ dS 2 S Next, use Et Z 0WG ( zˆ H t ) Hence Z WG 0 Z TE or Z TM 1 WG * Pf Re Z 0 ( zˆ H t ) H t zˆ dS 2 S 36 Attenuation in Waveguide (cont.) Vector identity: A B C B A C C A B ( zˆ H t ) H t* zˆ H t* ( zˆ H t ) zˆ zˆ ( H t H t* ) H t ( zˆ H t* ) zˆ Ht Hence Pf 2 2 1 WG Re Z 0 H t dS 2 S Assume Z0WG = real ( f > fc and no dielectric loss) 1 WG 2 Pf Z0 H t dS 2 S 37 Attenuation in Waveguide (cont.) Then we have Rs c WG 2Z 0 nˆ H 2 dl C 2 H t dS S y n̂ S x C 38 Attenuation in Waveguide (cont.) Total Attenuation: c d Calculate d (assume PEC wall): kz j k k 2 2 c so d Im k 2 kc2 where k c k0 r r 1 j tan 39 Attenuation in Waveguide (cont.) TE10 Mode y r 1 k k0 rc b rc x a c Rs b Re 1 f c / f d Im k 2 a 2 0 1 rc 2 b fc 1 2 a f 2 40 Attenuation in dB z S Waveguiding system (WG or TL) z=0 z V ( z ) V (0) e z e j z dB 20log10 Use V ( z) 20log10 (e z ) V (0) ln x log10 x ln10 41 Attenuation in dB (cont.) so ln(e z ) dB 20 ln10 ( z ) 20 ln10 Hence 20 Attenuation ln10 [dB/m] 42 Attenuation in dB (cont.) or Attenuation 8.6859 [dB/m] 43 Appendix: Tesche Model The series elements Za and Zb (defined on the next slide) account for the finite conductivity, and give us an accurate R and DL for each conductor at any frequency. Za Zb L0 C G Z Z a Zb j L0 Y G jC Dz C 2 0 rc b ln a G tan c C c 0 b L0 ln 2 a 44 Appendix: Tesche Model (cont.) Za Inner conductor of coax DLDC a The impedance of this circuit is denoted as RaDC DLHF a RaHF Zb Outer conductor of coax The impedance of this circuit is denoted as DL DC b RbDC RbHF Za Ra j DLa DLHF b Zb Rb j DLb 45 Appendix: Tesche Model (cont.) At low frequency the HF resistance gets small and the HF inductance gets large. DLDC a RaDC DLHF a RaHF Inner conductor of coax DLDC a RaDC RaHF DLHF a 46 Appendix: Tesche Model (cont.) At high frequency the DC inductance gets very large compared to the HF inductance, and the DC resistance is small compared with the HF resistance. DLDC a RaDC RaHF DLHF a Inner conductor of coax RaHF DLHF a 47 Appendix: Tesche Model (cont.) The formulas are summarized as follows: DC a R DL a DC a HF a R 1 2 0 8 DC b R DLDC b 1 2 bt 4 c c ln 2 2 0 b 3 c b 2 2 2 2 c 2 b 2 4 c b 1 DL 2 a HF a HF b R 1 DL 2 b HF b 48
© Copyright 2026 Paperzz