CesΓ ro Summable Sequence Spaces over the Non

Hindawi Publishing Corporation
Journal of Probability and Statistics
Volume 2016, Article ID 5862107, 10 pages
http://dx.doi.org/10.1155/2016/5862107
Research Article
Cesàro Summable Sequence Spaces over the
Non-Newtonian Complex Field
ULur Kadak
Department of Mathematics, Faculty of Sciences and Arts, Bozok University, Turkey
Correspondence should be addressed to UgΜ†ur Kadak; [email protected]
Received 12 September 2015; Accepted 27 October 2015
Academic Editor: Chin-Shang Li
Copyright © 2016 UgΜ†ur Kadak. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
𝑝
𝑝
can be considered the sets of all sequences that are strongly summable to zero, strongly summable,
The spaces πœ”0 , πœ”π‘ , and πœ”βˆž
and bounded, by the CesaΜ€ro method of order 1 with index 𝑝. Here we define the sets of sequences which are related to strong
CesaΜ€ro summability over the non-Newtonian complex field by using two generator functions. Also we determine the 𝛽-duals of
the new spaces and characterize matrix transformations on them into the sets of βˆ—-bounded, βˆ—-convergent, and βˆ—-null sequences
of non-Newtonian complex numbers.
1. Introduction
The theory of sequence spaces is the fundamental of summability. Summability is a wide field of mathematics, mainly in
analysis and functional analysis, and has many applications,
for instance, in numerical analysis to speed up the rate of convergence, in operator theory, the theory of orthogonal series,
and approximation theory. Also, the concepts of statistical
convergence have been studied by various mathematicians.
In recent years, generalizations of statistical convergence have
appeared in the study of strong integral summability and
the structure of ideals of bounded continuous functions on
locally compact spaces. Many important sequence spaces
arise in a natural way from different notions of summability,
that is, ordinary, absolute, and strong summability. The first
two cases may be considered as the domains of the matrices
that define the respective methods; the situation, however,
is different and more complicated in the case of strong
summability. Many authors have extensively developed the
theory of the matrix transformations between some sequence
spaces; we refer the reader to [1–6].
As an alternative to the classical calculus, Grossman and
Katz [7–9] introduced the non-Newtonian calculus consisting of the branches of geometric, quadratic, and harmonic
calculus, and so forth. All these calculi can be described
simultaneously within the framework of a general theory.
They decided to use the adjective non-Newtonian to indicate
any of calculi other than the classical calculus. Every property
in classical calculus has an analogue in non-Newtonian
calculus which is a methodology that allows one to have
a different look at problems which can be investigated via
calculus. In some cases, for example, for wage-rate (in dollars,
euro, etc.) related problems, the use of bigeometric calculus
which is a kind of non-Newtonian calculus is advocated
instead of a traditional Newtonian one.
Many authors have extensively developed the notion of
multiplicative calculus; see [10–12] for details. Also some
authors have also worked on the classical sequence spaces
and related topics by using non-Newtonian calculus [13–15].
Further Kadak [16] and Kadak et al. [17, 18] have matrix
transformations between certain sequence spaces over the
non-Newtonian complex field and have generalized RungeKutta method with respect to the non-Newtonian calculus.
The main focus of this work is to extend the strong CesaΜ€ro
summable sequence spaces defined earlier to their generalized sequence spaces over the non-Newtonian complex field
by using various generator functions, that is, exp and π‘žπ‘Ÿ
generators.
2. Preliminaries, Background, and Notations
Arithmetic is any system that satisfies the whole of the
ordered field axioms whose domain is a subset of R. There
2
Journal of Probability and Statistics
are infinitely many types of arithmetic, all of which are
isomorphic, that is, structurally equivalent.
A generator is a one-to-one function whose domain is R
and whose range is a subset R𝛼 of R where R𝛼 = {𝛼(π‘₯) :
π‘₯ ∈ R}. Each generator generates exactly one arithmetic,
and conversely each arithmetic is generated by exactly one
generator. If 𝐼(π‘₯) = π‘₯ for all π‘₯ ∈ R, then 𝐼 is called identity
function whose inverse is itself. In the special cases 𝛼 = 𝐼 and
𝛼 = exp, 𝛼 generates the classical and geometric arithmetic,
respectively. By 𝛼-arithmetic, we mean the arithmetic whose
domain is R and whose operations are defined as follows. For
π‘₯, 𝑦 ∈ R𝛼 and any generator 𝛼,
.
βˆ’1
βˆ’1
𝛼-addition π‘₯ + 𝑦 = 𝛼 {𝛼 (π‘₯) + 𝛼 (𝑦)}
.
𝛼-subtraction π‘₯ βˆ’ 𝑦 = 𝛼 {π›Όβˆ’1 (π‘₯) βˆ’ π›Όβˆ’1 (𝑦)}
.
𝛼-multiplication π‘₯ × π‘¦ = 𝛼 {π›Όβˆ’1 (π‘₯) × π›Όβˆ’1 (𝑦)}
.
βˆ’1
(1)
βˆ’1
𝛼-division π‘₯ / 𝑦 = 𝛼 {𝛼 (π‘₯) ÷ 𝛼 (𝑦)}
.
𝛼-order π‘₯ < 𝑦 ⇐⇒ π›Όβˆ’1 (π‘₯) < π›Όβˆ’1 (𝑦) .
As an example if we choose exp function from R to the set
Rexp βŠ† R+ ,
𝛼 : R 󳨀→ Rexp
π‘₯ 󳨃󳨀→ 𝑦 = 𝛼 (π‘₯) = 𝑒π‘₯ ,
(2)
.
𝑛
π‘˜=1
π‘˜=1
βˆ’1
= 𝛼 {𝛼 (π‘₯1 ) + β‹… β‹… β‹… + 𝛼 (π‘₯𝑛 )}
Definition 1 (see [13]). Let 𝑋 = (𝑋, 𝑑𝛼 ) be an 𝛼-metric space.
Then the basic notions can be defined as follows:
(a) A sequence π‘₯ = (π‘₯π‘˜ ) is a function from the set N into
the set R𝛼 . The 𝛼-real number π‘₯π‘˜ denotes the value of
the function at π‘˜ ∈ N and is called the π‘˜th term of the
sequence.
(b) A sequence (π‘₯𝑛 ) in 𝑋 = (𝑋, 𝑑𝛼 ) is said to be 𝛼. .
convergent if, for every given πœ€ > 0 (πœ€ ∈ R𝛼 ), there
exist 𝑛0 = 𝑛0 (πœ€) ∈ N and π‘₯ ∈ 𝑋 such that
.
.
𝑑𝛼 (π‘₯𝑛 , π‘₯) = |π‘₯𝑛 βˆ’ π‘₯|𝛼 < πœ€ for all 𝑛 > 𝑛0 and is denoted
𝛼
by 𝛼 limπ‘›β†’βˆž π‘₯𝑛 = π‘₯ or π‘₯𝑛 󳨀
β†’ π‘₯, as 𝑛 β†’ ∞.
(c) A sequence (π‘₯𝑛 ) in 𝑋 = (𝑋, 𝑑𝛼 ) is said to be 𝛼-Cauchy
. .
if for every πœ€ > 0 there is 𝑛0 = 𝑛0 (πœ€) ∈ N such that
.
𝑑𝛼 (π‘₯𝑛 , π‘₯π‘š ) < πœ€ for all π‘š, 𝑛 > 𝑛0 .
2
.
.
π‘₯3𝛼 = π‘₯2𝛼 × π‘₯ = 𝛼 {π›Όβˆ’1 {𝛼 [π›Όβˆ’1 (π‘₯) × π›Όβˆ’1 (π‘₯)]} × π›Όβˆ’1 (π‘₯)}
(3)
3
= 𝛼 {[π›Όβˆ’1 (π‘₯)] }
(6)
..
.
.
𝛼-division π‘₯ / 𝑦 = 𝑒{ln π‘₯/ ln 𝑦} = π‘₯1/ ln 𝑦 .
.
𝑝
π‘₯𝑝𝛼 = π‘₯(π‘βˆ’1)𝛼 × π‘₯ = 𝛼 {[π›Όβˆ’1 (π‘₯)] } ,
Following Grosmann and Katz [8] we give the infinitely
many π‘žπ‘Ÿ -arithmetic, of which the quadratic arithmetic and
harmonic arithmetic are special cases for π‘Ÿ = 2 and π‘Ÿ = βˆ’1,
respectively. The function π‘žπ‘Ÿ : R β†’ Rπ‘ž βŠ† R and its inverse
π‘žπ‘Ÿβˆ’1 (π‘₯) are defined as follows:
1/π‘Ÿ
π‘₯>0
{π‘₯ ,
{
π‘žπ‘Ÿ (π‘₯) = {0,
π‘₯=0
{
1/π‘Ÿ
,
π‘₯ < 0,
βˆ’
(βˆ’π‘₯)
{
π‘Ÿ
π‘₯>0
{π‘₯ ,
{
=
(π‘₯) {0,
π‘₯ = 0,
{
π‘Ÿ
,
π‘₯ < 0,
βˆ’
(βˆ’π‘₯)
{
βˆ€π‘₯π‘˜ ∈ R𝛼 .
π‘₯2𝛼 = π‘₯ × π‘₯ = 𝛼 {π›Όβˆ’1 (π‘₯) × π›Όβˆ’1 (π‘₯)} = 𝛼 {[π›Όβˆ’1 (π‘₯)] }
𝛼-subtraction π‘₯ βˆ’ 𝑦 = 𝑒{ln π‘₯βˆ’ln 𝑦} = π‘₯ ÷ 𝑦
π‘žπ‘Ÿβˆ’1
(5)
βˆ’1
.
𝛼-addition π‘₯ + 𝑦 = 𝑒{ln π‘₯+ln 𝑦} = π‘₯ β‹… 𝑦
.
𝑛
βˆ‘ π‘₯π‘˜ = 𝛼 { βˆ‘ π›Όβˆ’1 (π‘₯π‘˜ )}
𝛼
Throughout this paper, we define the 𝑝th 𝛼-exponent π‘₯𝑝𝛼
and π‘žth 𝛼-root π‘₯(1/π‘ž)𝛼 of π‘₯ ∈ R𝛼 by
and 𝛼-arithmetic turns out to be Geometric arithmetic:
𝛼-multiplication π‘₯ × π‘¦ = 𝑒{ln π‘₯ ln 𝑦} = π‘₯ln𝑦 = 𝑦lnπ‘₯
One can easily conclude that the 𝛼-summation can be
written as follows:
(4)
(π‘Ÿ ∈ R \ {0}) .
If π‘Ÿ = 1 then the π‘žπ‘Ÿ -calculus is reduced to the classical
calculus.
𝛼
and √π‘₯
= π‘₯(1/2)𝛼 = 𝑦 provided there exists 𝑦 ∈ R𝛼 such that
2𝛼
𝑦 = π‘₯.
2.1. βˆ—-Arithmetic. Suppose that 𝛼 and 𝛽 be two arbitrarily selected generators and β€œstar-” also be the ordered
pair of types of arithmetic (𝛽-arithmetic, 𝛼-arithmetic).
.
..
..
.. ..
.
.
.
The sets (R𝛽 , + , βˆ’ , × , / ) and (R𝛼 , + , βˆ’ , × , / ) are complete ordered fields and π‘π‘’π‘‘π‘Ž(π‘Žπ‘™π‘β„Žπ‘Ž)-generator generates
π‘π‘’π‘‘π‘Ž(π‘Žπ‘™π‘β„Žπ‘Ž)-arithmetic, respectively. Definitions given for 𝛽arithmetic are also valid for 𝛼-arithmetic. Also 𝛼-arithmetic
is used for arguments and 𝛽-arithmetic is used for values; in
particular, changes in arguments and values are measured by
𝛼-differences and 𝛽-differences, respectively.
Definition 2 (see [15]). (a) The βˆ—-limit of a function 𝑓,
denoted by βˆ— limπ‘₯β†’π‘Ž 𝑓(π‘₯) = 𝑏, at an element π‘Ž in R𝛼 is, if
it exists, the unique number 𝑏 in R𝛽 such that
Journal of Probability and Statistics
βˆ—
3
.. ..
. .
.. 󡄨 ..
󡄨
lim 𝑓 (π‘₯) = 𝑏 ⇐⇒ βˆ€πœ€ > 0 , βˆƒπ›Ώ > 0 βˆ‹ 󡄨󡄨󡄨󡄨𝑓 (π‘₯) βˆ’ 𝑏󡄨󡄨󡄨󡄨𝛽 < πœ€
π‘₯β†’π‘Ž
A function 𝑓 is βˆ—-continuous at a point π‘Ž in R𝛼 if and only
if π‘Ž is an argument of 𝑓 and βˆ— limπ‘₯β†’π‘Ž 𝑓(π‘₯) = 𝑓(π‘Ž). When
𝛼 and 𝛽 are the identity function 𝐼, the concepts of βˆ—-limit
and βˆ—-continuity are identical with those of classical limit and
classical continuity.
(b) The isomorphism from 𝛼-arithmetic to 𝛽-arithmetic
is the unique function πœ„ (iota) which has the following three
properties:
(i) πœ„ is one to one.
.
..
.
..
.
..
πœ„ (𝑒 + V) = πœ„ (𝑒) + πœ„ (V) ;
πœ„ (𝑒 × V) = πœ„ (𝑒) × πœ„ (V) ;
(8)
..
πœ„ (𝑒 / V) = πœ„ (𝑒) / πœ„ (V) ;
..
.
2.2. Non-Newtonian Complex Field and Some Inequalities.
.
.
.
.
..
.. .. ..
Let π‘Ž ∈ (R𝛼 , + , βˆ’ , × , / ) and 𝑏 ∈ (R𝛽 , + , βˆ’ , × , / ) be
arbitrarily chosen elements from corresponding arithmetic.
Then the ordered pair (π‘Ž, 𝑏) ∈ R𝛼 × R𝛽 βŠ† R2 is called a βˆ—point. The set of all βˆ—-points is called the set of βˆ—-complex
numbers and is denoted by Cβˆ— ; that is,
βˆ—
C fl {𝑧 = (π‘Ž, 𝑏) | π‘Ž ∈ R𝛼 , 𝑏 ∈ R𝛽 } .
(9)
Define the binary operations addition (βŠ•) and multiplication
(βŠ™) of βˆ—-complex numbers 𝑧1βˆ— = (π‘Ž1 , 𝑏1 ) and 𝑧2βˆ— = (π‘Ž2 , 𝑏2 ):
..
= (π‘Ž1 + π‘Ž2 , 𝑏1 + 𝑏2 )
= (𝛼 {π›Όβˆ’1 (π‘Ž1 ) + π›Όβˆ’1 (π‘Ž2 )} , 𝛽 {π›½βˆ’1 (𝑏1 ) + π›½βˆ’1 𝑏2 })
βˆ—
βŠ™ : C × C 󳨀→ C
..
Then the pair (𝑋, π‘‘βˆ— ) and π‘‘βˆ— are called a non-Newtonian
metric (βˆ—-metric) space and a βˆ—-metric on 𝑋, respectively.
The βˆ—-distance π‘‘βˆ— between two arbitrarily elements 𝑧1βˆ— =
(π‘Ž1 , 𝑏1 ) and 𝑧2βˆ— = (π‘Ž2 , 𝑏2 ) of the set Cβˆ— is defined by
π‘‘βˆ— (𝑧1βˆ— , 𝑧2βˆ— )
.
= √ [πœ„ (π‘Ž1 βˆ’ π‘Ž2 )]
𝛽
2𝛽 ..
..
2𝛽
+ (𝑏1 βˆ’ 𝑏2 )
(11)
2
2
= 𝛽 {√[π›Όβˆ’1 (π‘Ž1 ) βˆ’ π›Όβˆ’1 (π‘Ž2 )] + [π›½βˆ’1 (𝑏1 ) βˆ’ π›½βˆ’1 (𝑏2 )] } .
Up to now, we know that Cβˆ— is a field and the distance
between two points in Cβˆ— is computed by the function π‘‘βˆ— .
Let π‘§βˆ— = (π‘Ž, 𝑏) ∈ Cβˆ— be an arbitrary element. The distance
function π‘‘βˆ— (π‘§βˆ— , 0βˆ— ) is called βˆ—-norm of π‘§βˆ— and is denoted by
..
..
. ..
β€– β‹… β€– . In other words, let 0βˆ— = ( 0 , 0 ) ∈ Cβˆ— ; then
..
2
2
β€– π‘§βˆ— β€– = π‘‘βˆ— (π‘§βˆ— , 0βˆ— ) = 𝛽 {√(π›Όβˆ’1 {π‘Ž}) + (π›½βˆ’1 {𝑏}) } .
(𝑧1βˆ— , 𝑧2βˆ— ) 󳨃󳨀→
βˆ—
..
(NM1) π‘‘βˆ— (π‘₯, 𝑦) = 0 if and only if π‘₯ = 𝑦,
..
βŠ• : Cβˆ— × Cβˆ— 󳨀→ Cβˆ—
βˆ—
for all π‘Ž1 , π‘Ž2 ∈ R𝛼 and 𝑏1 , 𝑏2 ∈ R𝛽 .
..
It turns
out.. that πœ„(π‘₯) = 𝛽{𝛼 (π‘₯)} for
every π‘₯ in R𝛼 and
.
.
that πœ„( 𝑛 ) = 𝑛 for every 𝛼-integer 𝑛. Since, for example,
.
..
𝑒 + V = πœ„βˆ’1 {πœ„(𝑒) + πœ„(V)}, it should be clear that any statement
in 𝛼-arithmetic can readily be transformed into a statement
in 𝛽-arithmetic.
βŠ•
(10)
(NM3) π‘‘βˆ— (π‘₯, 𝑦) ≀ π‘‘βˆ— (π‘₯, 𝑧) + π‘‘βˆ— (𝑧, 𝑦).
βˆ’1
.
𝛽 {π›Όβˆ’1 (π‘Ž1 ) π›½βˆ’1 (𝑏2 ) + π›½βˆ’1 (𝑏1 ) π›Όβˆ’1 (π‘Ž2 )})
(NM2) π‘‘βˆ— (π‘₯, 𝑦) = π‘‘βˆ— (𝑦, π‘₯),
V =ΜΈ 0 ; 𝑒 ≀ V ⇐⇒ πœ„ (𝑒) ≀ πœ„ (V) .
𝑧2βˆ—
𝑧1βˆ— βŠ™ 𝑧2βˆ— = (𝛼 {π›Όβˆ’1 (π‘Ž1 ) π›Όβˆ’1 (π‘Ž2 ) βˆ’ π›½βˆ’1 (𝑏1 ) π›½βˆ’1 (𝑏2 )} ,
Definition 4. Let 𝑋 be a nonempty set and let π‘‘βˆ— : 𝑋 × π‘‹ β†’
R𝛽 be a function such that, for all π‘₯, 𝑦, 𝑧 ∈ 𝑋, the following
axioms hold:
πœ„ (𝑒 βˆ’ V) = πœ„ (𝑒) βˆ’ πœ„ (V) ;
𝑧1βˆ—
(𝑧1βˆ— , 𝑧2βˆ— ) 󳨃󳨀→
Following Grossman and Katz [8] we can give the definition of βˆ—-distance and some applications with respect to the
βˆ—-calculus.
(iii) For any numbers 𝑒, V ∈ R𝛼 ,
βˆ—
(7)
Theorem 3 (see [15]). (Cβˆ— , βŠ•, βŠ™) is a field.
(ii) πœ„ is from R𝛼 onto R𝛽 .
.
󡄨 . 󡄨 .
βˆ€πœ€ ∈ R𝛽 , 󡄨󡄨󡄨󡄨π‘₯ βˆ’ π‘Žσ΅„¨σ΅„¨σ΅„¨σ΅„¨π›Ό < 𝛿 for π‘₯, 𝛿 ∈ R𝛼 .
..
(12)
..
Moreover, for all 𝑧1βˆ— , 𝑧2βˆ— ∈ Cβˆ— we have π‘‘βˆ— (𝑧1βˆ— , 𝑧2βˆ— ) = β€– 𝑧1βˆ— βŠ–π‘§2βˆ— β€–
..
..
where π‘‘βˆ— is the induced metric from β€– β‹… β€– norm.
Theorem 5 (see [15]). (Cβˆ— , π‘‘βˆ— ) is a complete metric space,
where π‘‘βˆ— is defined by (11).
4
Journal of Probability and Statistics
Corollary 6 (see [15]). Cβˆ— is a Banach space with the βˆ—-norm
..
..
β€– β‹… β€– which is defined by (12).
Definition 7. (a) Given a sequence π‘§π‘˜βˆ— = (π‘Žπ‘˜ , π‘π‘˜ ) of βˆ—-complex
numbers, the formal notation
∞
(ii) Let 𝛼 and 𝛽 be the same generators. Then
𝑧1βˆ—
..
βŠ™ π‘§βˆ— = (π‘Ž1 , 𝑏1 ) βŠ™ (π‘Ž1 , βˆ’ 𝑏1 )
2
π‘˜=0
π‘˜=0
π‘˜=0
π΅βˆ— (π‘₯0 ; π‘Ÿ) = {π‘₯ ∈ 𝑋 | π‘‘βˆ— (π‘₯, π‘₯0 ) < π‘Ÿ} ,
= (𝛼 βˆ‘ π‘Žπ‘˜ , 𝛽 βˆ‘ π‘π‘˜ )
..
π΅βˆ— [π‘₯0 ; π‘Ÿ] = {π‘₯ ∈ 𝑋 | π‘‘βˆ— (π‘₯, π‘₯0 ) ≀ π‘Ÿ}
is called an infinite series with βˆ—-complex terms, or simply
complex βˆ—-series for all π‘˜ ∈ N. Also, for integers 𝑛 ∈ N,
the finite βˆ—-sums π‘ π‘›βˆ— = βˆ—βˆ‘π‘›π‘˜=0 π‘§π‘˜βˆ— are called the partial sums of
complex βˆ—-series. If the sequence βˆ—-converges to a complex
number π‘ βˆ— then we say that the series βˆ—-converges and write
βˆ—
βˆ—
π‘ βˆ— = βˆ—βˆ‘βˆž
π‘˜=0 π‘§π‘˜ . The number 𝑠 is then called the βˆ—-sum of this
series. If (𝑠𝑛 ) βˆ—-diverges, we say that the series βˆ—-diverges or
that it is βˆ—-divergent.
βˆ—
(b) A βˆ—-series βˆ—βˆ‘βˆž
π‘˜=0 π‘§π‘˜ is said to βˆ—-converge absolutely if
..
..
∞
βˆ—
βˆ—βˆ‘π‘˜=0 β€– π‘§π‘˜ β€– = β„“ for some number β„“ ∈ R𝛽 .
(c) Let {𝑓𝑛 (π‘₯)} be a sequence of functions from 𝐴 βŠ† R to
Cβˆ— for each 𝑛. We say that {𝑓𝑛 (π‘₯)} is uniformly βˆ—-convergent
to 𝑓 on 𝐴 if and only if, for each π‘₯ ∈ 𝐴 and for an arbitrary
.. ..
πœ– > 0 (πœ– ∈ R𝛽 ), there exists an integer 𝑁 = 𝑁(πœ–, π‘₯) such that
..
π‘‘βˆ— (𝑓𝑛 (π‘₯), 𝑓(π‘₯)) < πœ– whenever 𝑛 > 𝑁.
be uniformly βˆ—(d) The series βˆ—βˆ‘βˆž
π‘˜=0 π‘“π‘˜ (π‘₯) is said to
.. ..
convergent to 𝑓(π‘₯) on 𝐴 if, given any πœ€ > 0 , there exists an
integer 𝑛0 (πœ€) such that
𝑛
..
π‘‘βˆ— (βˆ— βˆ‘ π‘“π‘˜ (π‘₯) , 𝑓 (π‘₯)) < πœ€
whenever 𝑛 β‰₯ 𝑛0 (πœ€) .
π‘˜=0
(14)
𝑛 ..
.. 𝑝𝛽
(1/𝑝)𝛽
π‘˜=0
..
𝑛 ..
.. 𝑝𝛽
(1/𝑝)𝛽
≀ (𝛽 βˆ‘ β€– π‘§π‘˜βˆ— β€– )
π‘˜=0
..
𝑛 ..
.. 𝑝𝛽
+ (𝛽 βˆ‘ β€– π‘‘π‘˜βˆ— β€– )
(15)
(1/𝑝)𝛽
.
π‘˜=0
Remark 9. Let 𝑧1βˆ— = (π‘Ž1 , 𝑏1 ), 𝑧2βˆ— = (π‘Ž2 , 𝑏2 ) ∈ Cβˆ— . Then the
following statements hold:
(i) One has
𝑧1βˆ— ⊘ 𝑧2βˆ— =
(π‘Ž1 , 𝑏1 )
⊘
(π‘Ž2 , 𝑏2 )
= (𝛼 {
𝛽{
π›Όβˆ’1 (π‘Ž1 ) π›Όβˆ’1 (π‘Ž2 ) + π›½βˆ’1 (𝑏1 ) π›½βˆ’1 (𝑏2 )
2
(π›Όβˆ’1 (π‘Ž2 )) + (π›½βˆ’1 (𝑏2 ))
2
π›½βˆ’1 (𝑏1 ) π›Όβˆ’1 (π‘Ž2 ) βˆ’ π›Όβˆ’1 (π‘Ž1 ) π›½βˆ’1 (𝑏2 )
(π›Όβˆ’1
2
(π‘Ž2 )) +
(π›½βˆ’1
2
(𝑏2 ))
(17)
},
(16)
(18)
are βˆ—-neighborhood (or βˆ—-open (closed) ball) of centre π‘₯0
and radius π‘Ÿ, respectively.
We see that an βˆ—-open ball of radius π‘Ÿ is the set of all points
in 𝑋 whose beta-distance from the center of the ball is less
than π‘Ÿ and we say directly from the definition that every βˆ—neighborhood of π‘₯0 contains π‘₯0 ; in other words, π‘₯0 is a point
of each of its βˆ—-neighborhoods.
Definition 11. Let (𝑋, π‘‘βˆ— ) be a βˆ—-metric space. Then the
followings are valid:
(i) 𝐺 βŠ‚ 𝑋 is called βˆ—-open set if and only if every point of
𝐺 has a βˆ—-neighborhood contained in 𝐺. Also 𝐺 βŠ‚ 𝑋
is called βˆ—-closed set if and only if its complement is
βˆ—-open.
(ii) The βˆ—-interior πΊπ‘œ is the largest βˆ—-open set contained
in 𝐺 and the βˆ—-closure 𝐺 is the smallest βˆ—-closed set
contained in 𝐺.
Definition 12 (usual βˆ—-topology). Consider the set of βˆ—complex numbers with
..
Proposition 8 (see [15]). Let 𝑝 β‰₯ 1 and π‘§π‘˜βˆ— , π‘‘π‘˜βˆ— ∈ Cβˆ— for π‘˜ ∈
{0, 1, 2, 3, . . . , 𝑛}. Then
(𝛽 βˆ‘ β€– π‘§π‘˜βˆ— βŠ• π‘‘π‘˜βˆ— β€– )
.. 2𝛽
..
(13)
∞
..
..
Definition 10. Given a point π‘₯0 ∈ 𝑋. Then, for a positive 𝛽real number π‘Ÿ,
βˆ‘ π‘§π‘˜βˆ— = 𝑧0βˆ— βŠ• 𝑧1βˆ— βŠ• 𝑧2βˆ— βŠ• β‹… β‹… β‹… βŠ• π‘§π‘˜βˆ— βŠ• β‹… β‹… β‹…
βˆ—
∞
2
= (𝛼 {(π›Όβˆ’1 (π‘Ž1 )) + (π›½βˆ’1 (𝑏1 )) } , 0 ) = β€– π‘§βˆ— β€– .
𝜏 = {𝑆 βŠ† Cβˆ— | βˆ€π‘₯ ∈ 𝑆, βˆƒπ‘Ÿ > 0 βˆ‹ π΅βˆ— (π‘₯0 ; π‘Ÿ) βŠ† 𝑆}
βˆ—
(19)
βˆ—
for all π‘₯0 ∈ C and π‘Ÿ ∈ R𝛽 . Then (C , 𝜏) is a topological space
and is called βˆ—-usual topology on Cβˆ— .
Definition 13. (i) A topological βˆ—-vector (linear) space 𝑋 is
a βˆ—-vector space (see [17]) over the topological field that
endowed with a topology such that βˆ—-vector addition and
scalar multiplication are βˆ—-continuous functions.
(ii) A topological βˆ—-vector space is called βˆ—-normable if
the topology of the space can be induced by a βˆ—-norm.
Definition 14. A sequence space πœ† with a βˆ—-linear topology is
called a βˆ—K-space provided each of the maps 𝑝𝑖 : πœ† β†’ Cβˆ—
defined by 𝑝𝑖 (π‘₯) = π‘₯𝑖 is βˆ—-continuous for all 𝑖 ∈ N. A βˆ—Kspace is called a βˆ—FK-space provided πœ† is a complete linear
βˆ—-metric space (see [15]). An βˆ—FK-space whose topology is
βˆ—-normable is called a βˆ—BK-space.
Definition 15 (𝑝-βˆ—normed space). Let 𝑋 be a real or complex
..
..
βˆ—-linear space and let β€– β‹… β€– 𝑝 be a function from 𝑋 to the set
..
..
R+𝛽 and 𝑝 > 0. Then the pair (𝑋, β€– β‹… β€– 𝑝 ) is called a 𝑝-βˆ—normed
}) .
..
..
space and β€– β‹… β€– 𝑝 is a 𝑝-βˆ—norm for 𝑋, if the following axioms
are satisfied for all elements π‘₯, 𝑦 ∈ 𝑋 and for all scalars πœ†:
Journal of Probability and Statistics
..
..
5
..
.
..
(N1) β€– π‘₯ β€– 𝑝 = 0 ⇔ π‘₯ = πœƒβˆ— (πœƒβˆ— = ( 0 , 0 )),
..
..
..
.. 𝑝𝛽 .. ..
..
.. ..
(N2) β€– πœ† βŠ™ π‘₯ β€– 𝑝 = β€– πœ† β€–
modulus),
..
..
.. ..
..
..
..
× β€– π‘₯ β€– 𝑝 ( β€– πœ† β€– is complex
..
(N3) β€– π‘₯ βŠ• 𝑦 β€– 𝑝 ≀ β€– π‘₯ β€– 𝑝 + β€– 𝑦 β€– 𝑝 .
∞
Definition 16. (i) A βˆ—-linear map or βˆ—-linear operator 𝑇
between real (or complex) βˆ—-linear spaces 𝑋, π‘Œ is a function
.
.
.
.
.
.
𝑇 : 𝑋 β†’ π‘Œ such that 𝑇(πœ† × π‘₯ + πœ‡ × π‘¦) = πœ† × π‘‡π‘₯ + πœ‡ × π‘‡π‘¦ for
βˆ—
βˆ—
βˆ—
all πœ†, πœ‡ ∈ R𝛼 and similarly 𝑇(πœ† βŠ™π‘₯βŠ•πœ‡ βŠ™π‘¦) = πœ† βŠ™π‘‡π‘₯βŠ•πœ‡βˆ— βŠ™π‘‡π‘¦
for all πœ†βˆ— , πœ‡βˆ— ∈ Cβˆ— and π‘₯, 𝑦 ∈ 𝑋.
(ii) Let 𝑋 and π‘Œ be two βˆ—-normed linear spaces. A βˆ—linear map 𝑇 : 𝑋 β†’ π‘Œ is βˆ—-bounded if there is a constant
..
..
.. ..
..
.. .. ..
𝑀 β‰₯ 0 such that β€– 𝑇π‘₯ β€– π‘Œ ≀ 𝑀 × β€– π‘₯ β€– 𝑋 for all π‘₯ ∈ 𝑋. We
denote the set of all βˆ—-linear maps 𝑇 : 𝑋 β†’ π‘Œ by L(𝑋, π‘Œ)
and the set of all βˆ—-bounded linear maps by B(𝑋, π‘Œ).
3. Non-Newtonian Infinite Matrices
Let π‘€βˆ— denote the set of all βˆ—-complex sequences π‘₯ = (π‘₯π‘˜ )∞
π‘˜=0 .
βˆ—
, π‘βˆ— , 𝑐0βˆ— for the sets of all βˆ—-bounded, βˆ—As usual, we write β„“βˆž
convergent, βˆ—-null sequences and
β„“π‘βˆ—
βˆ—
= {𝑧 =
(π‘§π‘˜βˆ— )
βˆ—
∞ ..
βˆˆπœ” :βˆ—βˆ‘
π‘˜=1
provided the series on the right hand side converge. On the
other hand the series on the right hand side of (22) converges
if and only if
β€– π‘§π‘˜βˆ—
βˆ‘ (π›Όβˆ’1 (πœ€π‘–π‘˜ ) π›Όβˆ’1 (πœ‡π‘˜π‘— ) βˆ’ π›½βˆ’1 (π›Ώπ‘–π‘˜ ) π›½βˆ’1 (πœ‚π‘˜π‘— )) ,
π‘˜=0
(23)
∞
βˆ’1
β€–
< ∞}
(20)
βˆ‘ (𝛼 (πœ€π‘–π‘˜ ) 𝛽 (πœ‚π‘˜π‘— ) + 𝛽 (π›Ώπ‘–π‘˜ ) 𝛼 (πœ‡π‘˜π‘— ))
are convergent classically. However the series (22) may βˆ—diverge for some, or all, values of 𝑖, 𝑗; the product 𝐴 βŠ™ 𝐡 may
not exist.
βˆ—
) = (πœ€π‘›π‘˜ , π›Ώπ‘›π‘˜ ) be an infinite
Let πœ‡1βˆ— , πœ‡2βˆ— βŠ‚ π‘€βˆ— , and 𝐴 = (π‘Žπ‘›π‘˜
matrix of βˆ—-complex numbers. Then we say that 𝐴 defines a
matrix mapping from πœ‡1βˆ— into πœ‡2βˆ— and denote it by writing 𝐴 :
πœ‡1βˆ— β†’ πœ‡2βˆ— , if for every sequence 𝑧 = (π‘§π‘˜βˆ— ) ∈ πœ‡1βˆ— the sequence
𝐴 βŠ™ 𝑧 = {(𝐴𝑧)𝑛 }, the 𝐴-transform of 𝑧, exists and is in πœ‡2βˆ— . In
this way, we transform the sequence 𝑧 = (π‘§π‘˜βˆ— ) = (πœ‡π‘˜ , πœ‚π‘˜ ) with
πœ‡π‘˜ ∈ R𝛼 and πœ‚π‘˜ ∈ R𝛽 , into the sequence {(𝐴𝑧)𝑛 } by
βˆ—
{(𝐴𝑧)𝑛 } = βˆ— βˆ‘π‘Žπ‘›π‘˜
βŠ™ π‘§π‘˜βˆ—
π‘˜
∞
𝐴 βŠ• 𝐡 = (π‘Žπ‘–π‘—βˆ— βŠ• π‘π‘–π‘—βˆ— )
= (πœ–π‘–π‘— , 𝛿𝑖𝑗 ) βŠ• (πœ‡π‘–π‘— , πœ‚π‘–π‘— )
..
= (πœ–π‘–π‘— + πœ‡π‘–π‘— , 𝛿𝑖𝑗 + πœ‚π‘–π‘— )
= (𝛼 {π›Όβˆ’1 (πœ–π‘–π‘— ) + π›Όβˆ’1 (πœ‡π‘–π‘— )} , 𝛽 {π›½βˆ’1 (𝛿𝑖𝑗 ) + π›½βˆ’1 (πœ‚π‘–π‘— )}) ,
(21)
πœ†βˆ— βŠ™ 𝐴 = (πœ†βˆ— βŠ™ π‘Žπ‘–π‘—βˆ— )
..
= ( πœ† , πœ† ) βŠ™ (πœ–π‘–π‘— , 𝛿𝑖𝑗 )
= (𝛼 {πœ†πœ–π‘–π‘— βˆ’ πœ†π›Ώπ‘–π‘— } , 𝛽 {πœ†πœ–π‘–π‘— + πœ†π›Ώπ‘–π‘— }) ,
.
..
(πœ†βˆ— = ( πœ† , πœ† ) ∈ Cβˆ— ) ,
where πœ€π‘–π‘— , πœ‡π‘–π‘— ∈ R𝛼 and 𝛿𝑖𝑗 , πœ‚π‘–π‘— ∈ R𝛽 for all 𝑖, 𝑗 ∈ N. Also, the
product (𝐴 βŠ™ 𝐡)𝑖𝑗 of 𝐴 = (π‘Žπ‘–π‘—βˆ— ) and 𝐡 = (π‘π‘–π‘—βˆ— ) can be interpreted
as
∞
βˆ—
βˆ—
= βˆ— βˆ‘ π‘Žπ‘–π‘˜
βŠ™ π‘π‘˜π‘—
π‘˜=0
∞
= (𝛼 { βˆ‘ (π›Όβˆ’1 (πœ€π‘–π‘˜ ) π›Όβˆ’1 (πœ‡π‘˜π‘— ) βˆ’ π›½βˆ’1 (π›Ώπ‘–π‘˜ ) π›½βˆ’1 (πœ‚π‘˜π‘— ))} , (22)
π‘˜=0
∞
𝛽 { βˆ‘ (π›Όβˆ’1 (πœ€π‘–π‘˜ ) π›½βˆ’1 (πœ‚π‘˜π‘— ) + π›½βˆ’1 (π›Ώπ‘–π‘˜ ) π›Όβˆ’1 (πœ‡π‘˜π‘— ))})
π‘˜=0
βˆ’1
..
.. 𝑝
A non-Newtonian infinite matrix 𝐴 = (π‘Žπ‘–π‘—βˆ— ) of βˆ—-complex
numbers is defined by a function 𝐴 from the set N×N into Cβˆ— .
The addition (βŠ•) and scalar multiplication (βŠ™) of the infinite
matrices 𝐴 = (π‘Žπ‘–π‘—βˆ— ) = (πœ–π‘–π‘— , 𝛿𝑖𝑗 ) and 𝐡 = (π‘π‘–π‘—βˆ— ) = (πœ‡π‘–π‘— , πœ‚π‘–π‘— ) are
defined by
.
βˆ’1
π‘˜=0
for 1 ≀ 𝑝 < ∞.
.
βˆ’1
= (𝛼 { βˆ‘ (π›Όβˆ’1 (πœ€π‘›π‘˜ ) π›Όβˆ’1 (πœ‡π‘˜ ) βˆ’ π›½βˆ’1 (π›Ώπ‘›π‘˜ ) π›½βˆ’1 (πœ‚π‘˜ ))} ,
π‘˜=0
(24)
∞
𝛽 { βˆ‘ (π›Όβˆ’1 (πœ€π‘›π‘˜ ) π›½βˆ’1 (πœ‚π‘˜ ) + π›½βˆ’1 (π›Ώπ‘›π‘˜ ) π›Όβˆ’1 (πœ‡π‘˜ ))})
π‘˜=0
for all π‘˜, 𝑛 ∈ N. Thus, 𝐴 ∈ (πœ‡1βˆ— : πœ‡2βˆ— ) if and only if the series on
the right side of (24) βˆ—-converges for each 𝑛 ∈ N and every
𝑧 ∈ πœ‡1βˆ— , and we have 𝐴 βŠ™ 𝑧 = {(𝐴𝑧)𝑛 }π‘›βˆˆN ∈ πœ‡2βˆ— for all 𝑧 ∈ πœ‡1βˆ— . A
sequence 𝑧 is said to be 𝐴-summable to 𝛾 if π΄βŠ™π‘§ βˆ—-converges
to 𝛾 ∈ Cβˆ— which is called 𝐴-βˆ— lim of 𝑧.
The CesaΜ€ro transform of a sequence 𝑧 = (π‘§π‘˜βˆ— ) ∈ π‘€βˆ— is
given by 𝐢1βˆ— βŠ™ 𝑧 = {(𝐢1βˆ— 𝑧)𝑛 }π‘›βˆˆN . Now, following Example 17
we may state the CesaΜ€ro summability with respect to the nonNewtonian calculus which is analogous to the classical CesaΜ€ro
summable.
βˆ—
) by
Example 17. Define the matrix 𝐢1βˆ— = (π‘π‘›π‘˜
βˆ—
π‘π‘›π‘˜
(𝛼, 𝛽)
1
1 βˆ—
1
{
(
) = (𝛼 (
),𝛽(
)) , 0 ≀ π‘˜ ≀ 𝑛, (25)
{
{
{ 𝑛+1
𝑛+1
𝑛+1
={
{
{
{ βˆ—
π‘˜ > 𝑛.
{0 = (𝛼 (0) , 𝛽 (0)) ,
If we choose the generator functions as 𝛼 = exp and 𝛽 = exp,
then the infinite matrix can be written as follows:
6
Journal of Probability and Statistics
(𝑒, 𝑒)
(1, 1)
β‹…β‹…β‹…
β‹…β‹…β‹…
β‹…β‹…β‹…
(βˆšπ‘’, βˆšπ‘’)
β‹…β‹…β‹…
β‹…β‹…β‹…
(βˆšπ‘’, βˆšπ‘’)
(1, 1)
(
3
3
3
3
3
3
( (βˆšπ‘’,
βˆšπ‘’)
βˆšπ‘’)
βˆšπ‘’)
(βˆšπ‘’,
(βˆšπ‘’,
β‹…β‹…β‹…
(1, 1)
(
(
βˆ—
(
π‘π‘›π‘˜ (exp, exp) = (
..
..
..
..
.
.
.
d
.
(
(
( 𝑛+1 𝑛+1
βˆšπ‘’, 𝑛+1
βˆšπ‘’) ( 𝑛+1
βˆšπ‘’, 𝑛+1
βˆšπ‘’) β‹… β‹… β‹… ( 𝑛+1
βˆšπ‘’, 𝑛+1
βˆšπ‘’)
( βˆšπ‘’, βˆšπ‘’) ( 𝑛+1
..
.
(
..
.
..
.
The 𝐢1βˆ— -transform of a sequence π‘₯ = (π‘₯π‘˜βˆ— ) = (π‘Žπ‘˜ , π‘π‘˜ ) is the
sequence 𝑦 = (π‘¦π‘›βˆ— ) defined by
π‘₯π‘˜βˆ—
. ⊘
π‘˜=1 𝑛
𝑛
π‘Ž
= (𝛼 βˆ‘ .π‘˜ β‹…,
π‘˜=1 𝑛
𝑏
βˆ‘ ..π‘˜ :)
𝛽
π‘˜=1 𝑛
(27)
where (⊘ is βˆ—-complex division), π‘Žπ‘˜ ∈ R𝛼 , and π‘π‘˜ ∈ R𝛽 for all
π‘˜ ∈ N. Taking 𝛼 = exp and 𝛽 = exp, we obtain 𝐢1βˆ— -transform
of π‘₯ = (π‘₯π‘˜βˆ— ) = (π‘Žπ‘˜ , π‘π‘˜ ) as follows:
π‘¦π‘›βˆ— = (𝐢1βˆ— βŠ™ π‘₯)𝑛
1 𝑛
1 𝑛
= (exp { βˆ‘ ln (π‘Žπ‘˜ )} , exp { βˆ‘ ln (π‘π‘˜ )})
𝑛 π‘˜=1
𝑛 π‘˜=1
= ((π‘Ž1 β‹… β‹… β‹… π‘Žπ‘› )
1/𝑛
, (𝑏1 β‹… β‹… β‹… 𝑏𝑛 )
)
β‹…β‹…β‹… )
)
)
.. )
).
. )
)
)
β‹…β‹…β‹…
(26)
d )
4. Matrix Transformations Related to
the Strong Cesàro βˆ—-Summability
..
𝑛
1 𝑛
1 𝑛
= (𝛼 { βˆ‘ π›Όβˆ’1 (π‘Žπ‘˜ )} , 𝛽 { βˆ‘ π›½βˆ’1 (π‘π‘˜ )}) ,
𝑛 π‘˜=1
𝑛 π‘˜=1
1/𝑛
..
.
β‹…β‹…β‹…
Let 𝑒 and 𝑒(𝑛) (𝑛 = 0, 1, . . .) be the sequences with π‘’π‘˜ = 1βˆ— for
all π‘˜ ∈ N and 𝑒𝑛(𝑛) = 1βˆ— and π‘’π‘˜(𝑛) = 0βˆ— for π‘˜ =ΜΈ 𝑛. Also, if 𝑋 is
π‘¦π‘›βˆ— = (𝐢1βˆ— βŠ™ π‘₯)𝑛 = βˆ— βˆ‘
𝑛
β‹…β‹…β‹…
β‹…β‹…β‹…
(28)
),
a βˆ—BK-space and π‘Ž ∈ πœ”βˆ— then we write β€–π‘Žβ€–β€‘ = sup{ β€– βˆ—βˆ‘ π‘Žπ‘˜ βŠ™
..
..
..
..
π‘₯π‘˜ β€– : β€– π‘₯ β€– = 1}. Moreover, a βˆ—BK-space 𝑋 βŠƒ 0 is said to
have βˆ—AK if every sequence π‘₯ = (π‘₯π‘˜ )∞
π‘˜=1 ∈ 𝑋 has a unique
∞
(π‘˜)
representation π‘₯ = βˆ—βˆ‘π‘˜=1 π‘₯π‘˜ βŠ™ 𝑒 . If 𝑋 is a subset of π‘€βˆ— then
𝑋𝛽 = {π‘Ž ∈ πœ”βˆ— : π‘Ž βŠ™ π‘₯ ∈ π‘π‘ βˆ— for all π‘₯ ∈ 𝑋} is called the 𝛽-dual
of 𝑋.
Throughout the text we use the notation [𝐢1βˆ— ]𝑝 for strong
CesaΜ€ro βˆ—-summability of order 1 and index 𝑝. Maddox [19]
introduced and studied the sets of sequences that are strongly
summable and bounded with index 𝑝, (1 ≀ 𝑝 < ∞) by
the CesaΜ€ro method of order one. By taking into account the
𝑝
𝑝
(𝛼, 𝛽) of sequences that are
sets πœ”0 (𝛼, 𝛽), πœ”π‘ (𝛼, 𝛽), and πœ”βˆž
strongly βˆ—-summable to zero, βˆ—-summable, and βˆ—-bounded
of index 𝑝 β‰₯ 1 are defined by
(π‘Žπ‘› , 𝑏𝑛 ∈ Rexp ) .
.. 𝑝𝛽
..
𝑛
{
β€– π‘₯π‘˜ β€–
𝑝
πœ”0 (𝛼, 𝛽) = {π‘₯π‘˜ = (π‘Žπ‘˜ , π‘π‘˜ ) ∈ πœ”βˆ— : 𝛽 lim 𝛽 βˆ‘
..
π‘›β†’βˆž
𝑛
π‘˜=1
{
.. }
fl 0 }
}
(π‘Žπ‘˜ ∈ R𝛼 , π‘π‘˜ ∈ R𝛽 )
..
2
2 𝑝/2
1 𝑛
= {(π‘Žπ‘˜ , π‘π‘˜ ) ∈ πœ”βˆ— : lim 𝛽 { βˆ‘ [(π›Όβˆ’1 {π‘Žπ‘˜ }) + (π›½βˆ’1 {π‘π‘˜ }) ] } = 0 } ,
π‘›β†’βˆž
𝑛 π‘˜=1
.. 𝑝𝛽
..
𝑛
{
β€– π‘₯π‘˜ ⊝ β„“ β€–
πœ”π‘ (𝛼, 𝛽) = {π‘₯π‘˜ = (π‘Žπ‘˜ , π‘π‘˜ ) ∈ πœ”βˆ— : 𝛽 lim 𝛽 βˆ‘
..
π‘›β†’βˆž
𝑛
π‘˜=1
{
}
..
fl 0 for some β„“ ∈ Cβˆ— }
}
..
2
2 𝑝/2
1 𝑛
= {(π‘Žπ‘˜ , π‘π‘˜ ) ∈ πœ”βˆ— : lim 𝛽 { βˆ‘ [(π›Όβˆ’1 {π‘Žπ‘˜ } βˆ’ π›Όβˆ’1 {β„“1 }) + (π›½βˆ’1 {π‘π‘˜ } βˆ’ π›½βˆ’1 {β„“2 }) ] } = 0 , β„“ = (β„“1 , β„“2 ) ∈ Cβˆ— } ,
π‘›β†’βˆž
𝑛 π‘˜=1
..
.. 𝑝𝛽
𝑛
{
β€– π‘₯π‘˜ β€–
𝑝
πœ”βˆž
(𝛼, 𝛽) = {π‘₯π‘˜ = (π‘Žπ‘˜ , π‘π‘˜ ) ∈ πœ”βˆ— : sup 𝛽 βˆ‘
..
𝑛
π‘›βˆˆN π‘˜=1
{
}
..
..
2
2 𝑝/2
1 𝑛
: < ∞} = {(π‘Žπ‘˜ , π‘π‘˜ ) ∈ πœ”βˆ— : sup 𝛽 { βˆ‘ [(π›Όβˆ’1 {π‘Žπ‘˜ }) + (π›½βˆ’1 {π‘π‘˜ }) ] } < ∞} .
𝑛 π‘˜=0
π‘›βˆˆN
}
(29)
Journal of Probability and Statistics
7
..
.. 𝑝𝛽
𝑛
{
β€– π‘₯π‘˜ β€–
{
{
:,
sup
βˆ‘
{
..
{
𝛽
{
𝑛
.. ..
{ π‘›βˆˆN π‘˜=1
β€–π‘₯‖† = {
(1/𝑝)𝛽
.. 𝑝𝛽
..
{
𝑛
{
β€– π‘₯π‘˜ β€–
{
{
{
sup
(
,
:)
βˆ‘
..
{
𝛽
𝑛
π‘›βˆˆN
π‘˜=1
{
For instance,
𝑝
(i) πœ”0 (exp, π‘žπ‘Ÿ ) = {(π‘Žπ‘˜ , π‘π‘˜ ) ∈ πœ”βˆ— : limπ‘›β†’βˆž {(1/
𝑛) βˆ‘π‘›π‘˜=1 (ln2 (π‘Žπ‘˜ ) + (π‘π‘˜ )2π‘Ÿ )𝑝/2 }1/π‘Ÿ = 0}, (π‘Žπ‘˜ ∈ Rexp , π‘π‘˜ ∈
Rπ‘ž , π‘Ÿ ∈ R+ , 𝑝 β‰₯ 1);
(ii) πœ”π‘ (π‘žπ‘Ÿ , exp) = {(π‘Žπ‘˜ , π‘π‘˜ ) ∈ πœ”βˆ— : limπ‘›β†’βˆž {(1/
𝑛) βˆ‘π‘›π‘˜=1 [((π‘Žπ‘˜ )π‘Ÿ βˆ’ (β„“1 )π‘Ÿ )2 + ln2 (π‘π‘˜ /𝑙2 )]𝑝/2 } = 0}, (π‘Žπ‘˜ , β„“1 ∈
Rπ‘ž ; π‘π‘˜ , β„“2 ∈ Rexp ).
..
(32)
(1/𝑝)𝛽
.. 𝑝𝛽
..
,
.
:)
Proof. The proof is straightforward (see [20]).
𝑝
First we give the 𝛽-duals of the spaces πœ”0 (𝛼, 𝛽), πœ”π‘ (𝛼, 𝛽),
𝑝
(𝛼, 𝛽). We prefer the notation βˆ‘] and max] for the
and πœ”βˆž
sum and maximum taken over all indices π‘˜ with 2] ≀ π‘˜ ≀
2]+1 βˆ’ 1 and put
Proof. The proof is a routine verification and hence omitted.
𝑝
𝑝
Corollary 19. The sets πœ”0 (𝛼, 𝛽), πœ”π‘ (𝛼, 𝛽), and πœ”βˆž
(𝛼, 𝛽)
(𝛼,𝛽)
are Banach spaces with the induced metric 𝑑𝑝
from the
(𝛼,𝛽)
M𝑝
..
corresponding norm β€– π‘₯ β€– † defined by
..
= {𝑧 ∈ πœ”βˆ— : ‖𝑧‖M𝑝 < ∞} ,
(33)
where
∞
𝑝
:)
β€– π‘₯π‘˜ β€–
= sup (𝛽 βˆ‘
..
𝑛
π‘›βˆˆN
π‘˜=1
∞
β€– π‘₯π‘˜ ⊝ π‘¦π‘˜ β€–
{
{
{
:,
0 < 𝑝 < 1,
sup 𝛽 βˆ‘
..
{
{
𝑛
(30)
{
{ π‘›βˆˆN π‘˜=1
fl {
(1/𝑝)𝛽
.. 𝑝𝛽
..
{
{
{ 𝑛 β€– π‘₯π‘˜ ⊝ π‘¦π‘˜ β€–
}
{
{
{sup {𝛽 βˆ‘
, 1 ≀ 𝑝 < ∞.
:}
..
{
𝑛
π‘›βˆˆN
{
{ π‘˜=1
}
‖𝑧‖M(𝛼,𝛽)
𝑛
β€–π‘₯β€–β€ πœ”π‘ (𝛼,𝛽)
.. 𝑝𝛽
(1/𝑝)𝛽
.. 𝑝𝛽
β€–π‘₯ β€–
= sup (𝛽 βˆ‘ π‘˜]𝛽
2
]∈N
]
𝑝
β€–π‘₯β€–πœ”βˆž
(𝛼,𝛽)
𝑑𝑝(𝛼,𝛽) (π‘₯, 𝑦)
..
1 ≀ 𝑝 < ∞.
𝑝
𝑝
..
(31)
Proposition 20. Let 1 ≀ 𝑝 < ∞. The sets πœ”0 (𝛼, 𝛽), πœ”π‘ (𝛼, 𝛽),
𝑝
(𝛼, 𝛽) are βˆ—BK-spaces with the (equivalent) βˆ—-norms
and πœ”βˆž
𝑝
(𝛼, 𝛽) are
Theorem 18. The sets πœ”0 (𝛼, 𝛽), πœ”π‘ (𝛼, 𝛽), and πœ”βˆž
(𝛼,𝛽)
βˆ—
complete βˆ—-metric spaces over the field C with the metric 𝑑𝑝
defined by
𝑛
0 < 𝑝 < 1,
..
..
.. ]𝛽 ..
{
{
βˆ‘ 2 × max β€– π‘§π‘˜ β€– ,
{
𝛽
{
]
{
{ ]=0
{
={
{
(1/π‘ž)𝛽
∞
{
.. π‘žπ›½
..
{
.. (]/𝑝)𝛽 ..
{
{
×
(
β€–
𝑧
β€–
)
,
βˆ‘
βˆ‘
{𝛽 2
π‘˜
𝛽
]
{ ]=0
𝑝 = 1,
(𝛼,𝛽)
(1 < 𝑝 < ∞; π‘ž =
𝑝
),
(𝑝 βˆ’ 1)
βˆ€π‘§ ∈ M𝑝
.
(34)
In particular, we have
∞
‖𝑧‖M(exp,exp)
𝑝
..
for all π‘§π‘˜ = (π‘Žπ‘˜ , π‘π‘˜ ) ∈ πœ”βˆ— where π‘Žπ‘˜ , π‘π‘˜ ∈ Rexp = (0, ∞).
βˆ—
Now, with regard to notation, for any matrix 𝐴 = (π‘Žπ‘›π‘˜
) we
write, for 1/𝑝 + 1/π‘ž = 1, 𝑝 β‰₯ 1,
.. π‘žπ›½
..
βˆ—
𝐴𝑝] (𝑛) = (𝛽 βˆ‘ β€– π‘Žπ‘›π‘˜
β€– )
(1/π‘ž)𝛽
(36)
]
and the case 𝑝 = 1 of (36) is interpreted as
..
..
βˆ—
𝐴1] (𝑛) = max β€– π‘Žπ‘›π‘˜
β€–.
]
..
∞
..
..
2]
{
exp { βˆ‘ 2] ln (max β€– π‘§π‘˜ β€– )} = ∏ (max β€– π‘§π‘˜ β€– ) , 𝑝 = 1,
{
{
]
]
{
{
]=0
]=0
={
1/π‘ž
∞
{
.. π‘ž
..
{
{
{exp { βˆ‘ 2]/𝑝 (βˆ‘ (ln β€– π‘§π‘˜ β€– ) ) } ,
1 < 𝑝 < ∞,
]
{
]=0
(37)
(35)
Remark 21. Let π‘Œ be a βˆ—-normed space and let 𝑇 be a βˆ—-linear
operator on the 𝑝-βˆ—normed space 𝑋 into π‘Œ. Then it is easy to
see that 𝑇 is βˆ—-continuous on 𝑋 if and only if there is a positive
..
..
..
.. ..
.. (1/𝑝)𝛽
on 𝑋.
constant 𝑀 ∈ R𝛽 such that β€– 𝑇π‘₯ β€– π‘Œ ≀ 𝑀 × β€– π‘₯ β€– 𝑋
The βˆ—-norm on the left is the norm in π‘Œ and that on the
right is 𝑝-βˆ—norm in 𝑋. It is also seen that Banach-Steinhaus
theorem in the non-Newtonian sense holds in a 𝑝-βˆ—normed
space defined in Definition 15.
Also one can immediately conclude that [𝐢1βˆ— ]𝑝 is βˆ—complete in the metric generated by the βˆ—-norm. For
simplicity we denote [𝐢1βˆ— ]𝑝 by Ξ©, so that, in the case 𝑝 β‰₯ 1, Ξ©
8
Journal of Probability and Statistics
is a Banach space and, in the case 0 < 𝑝 < 1, Ξ© is a complete
𝑝-βˆ—normed space. The dual space of Ξ©, that is, the space of
continuous βˆ—-linear functionals on Ξ©, will be denoted by Ξ©βˆ— .
To prove uniformly βˆ—-convergent, by using the conjugate
numbers 𝑝 and π‘ž for 0 < 𝑝 < 1, then, for any positive integer
𝑛0 and for any π‘š β‰₯ 2𝑛0 , we obtain
∞ ..
Corollary 22 (cf. [19] (Banach-Steinhaus)). If (𝑇𝑛 ) is
a sequence of continuous βˆ—-linear operators on a π‘βˆ—normed space 𝑋 into a βˆ—-normed space π‘Œ such that
..
..
..
𝛽
lim sup𝑛 β€– 𝑇𝑛 π‘₯ β€– π‘Œ < ∞ on a second category set in 𝑋, then
..
sup𝑛 ‖𝑇𝑛 β€– < ∞. It is important to remark that ‖𝑇𝑛 β€– denotes the
..
..
.. ..
π‘˜=π‘š
The next theorem characterizes all infinite matrices 𝐴
which map the space [𝐢1βˆ— ]𝑝 into the space π‘βˆ— of convergent
sequences of βˆ—-complex numbers.
Theorem 23. (𝐴𝑧)𝑛 is defined for each 𝑛 and the sequence
{(𝐴𝑧)𝑛 } is βˆ—-convergent, whenever 𝑧 ∈ Ξ©, if and only if,
(a) for 0 < 𝑝 < 1,
.. (]/𝑝)𝛽 ..
≀ 𝛽 βˆ‘ 𝐴1]
]=𝑛0
(ii) 𝑀 = sup𝑛 {𝛽 βˆ‘βˆž
]=0 2
× π΄1] (𝑛)} < ∞;
(i) as in (a) above,
.. (]/𝑝)𝛽 ..
βˆ—
βˆ—
(iii) 𝑑
=
βˆ—
𝛽
βˆ‘
π‘˜=1
βˆ—
β€– π‘Žπ‘›π‘˜
β†’
where π‘§π‘˜
..
.. ..
∞ .. (]/𝑝)𝛽 ..
× max] β€– πœ‰π‘˜ β€– ≀ 𝑀,
𝛽 βˆ‘]=0 2
holds
..
..
∞
..
..
..
(43)
]
= 0 , (𝑛 β†’ ∞).
for each 𝑛 and each ] β‰₯ 0. They are βˆ—-linear and βˆ—-continuous
since
.. ..
..
.. .. (]/𝑝)𝛽 .. ..
βˆ—
β€– βˆ— βˆ‘π‘Žπ‘›π‘˜
βŠ™ π‘§π‘˜ β€– ≀ 𝐴1] (𝑛) × 2
.. 1/𝑝
× β€–π‘§β€–π‘ .
]
.. ..
..
.. ..
.. (1/𝑝)𝛽
.. .. ..
.. 𝑝𝛽
(38)
(1/𝑝)𝛽
.. (]/𝑝)𝛽 ..
≀ 𝛽 βˆ‘ 𝐴1] (𝑛) × 2
..
.. (βˆ’1/𝑝)𝛽
× sgn 𝑧𝑛,𝑁] , π‘§π‘˜ = 0βˆ— (π‘˜ =ΜΈ 𝑁] ), for 0 ≀ ] ≀ 𝑠,
..
..
..
..
where 𝑁] is such that β€– 𝑧𝑛,𝑁] β€– = max] β€– π‘Žπ‘›,π‘˜ β€– . By (45) we
.. .. (]/𝑝)𝛽 ..
.. 1/𝑝
× β€–π‘§β€–π‘
..
..
≀𝑀×
..
.. 1/𝑝 ..
‖𝑧‖𝑝 <
∞.
∞
]=0
Again for 0 < 𝑝 < 1 we will show that the conditions (i) and
(ii) imply (iii). In fact we will prove that (ii) which implies
..
..
βˆ—
βˆ‘βˆž
π‘˜=0 β€– π‘Žπ‘›π‘˜ β€– is uniformly βˆ—-convergent (see Definition 7) and
this together with (i) gives
lim
𝑛
𝑧𝑁] = 2
have π›½βˆ‘π‘ ]=0 𝐴1] (𝑛) × 2
]
βˆ—
(45)
.. (]/𝑝)𝛽 ..
]
..
,
where ‖𝐴 𝑛 β€– = sup𝑛 β€– (𝐴𝑧)𝑛 β€– × β€– 𝑧 β€– 𝑝
. Taking any
βˆ—
integer 𝑠 > 0 and define 𝑧 ∈ Ξ© by π‘§π‘˜ = 0 for π‘˜ β‰₯ 2𝑠+1 and
..
..
(44)
βˆ—
From Corollary 22, it follows that lim] βˆ—βˆ‘] π‘Žπ‘›π‘˜
βŠ™ π‘§π‘˜ = (𝐴𝑧)𝑛 is
βˆ—
in Ξ© , whence
..
..
imply
(42)
β€– (𝐴𝑧)𝑛 β€– ≀ β€– 𝐴 𝑛 β€– × β€– 𝑧 β€– 𝑝
βˆ—
≀ 𝛽 βˆ‘ (𝛽 βˆ‘ β€– π‘Žπ‘›π‘˜
βŠ™ π‘§π‘˜ β€– )
]=0
(i)-(ii)
βˆ—
βŠ™ π‘§π‘˜ 󳨀→ βˆ— βˆ‘ πœ‰π‘˜ βŠ™ π‘§π‘˜
βˆ‘ π‘Žπ‘›π‘˜
βŠ™ π‘§π‘˜ β€–
∞
and
βˆ—
β€– βˆ— βˆ‘π‘Žπ‘›π‘˜
βŠ™ π‘§π‘˜ β€– ∈ Ξ©βˆ— ,
βˆ—
βŠ™ π‘§π‘˜ β€–
= 𝛽 βˆ‘ 𝛽 βˆ‘ β€– π‘Žπ‘›π‘˜
]=0
β„“,
(41)
and we deduce that
βŠ™
𝑧
is
absolutely
βˆ—-convergent
and the last sum in (41)
πœ‰
βˆ‘
π‘˜
βˆ—
..π‘˜
goes to 0 as 𝑛 β†’ ∞. From (39),
..
∞
.
βˆ—
βˆ—
βŠ– πœ‰π‘˜ )] βŠ• βˆ— βˆ‘ (π‘Žπ‘›π‘˜
βŠ– πœ‰π‘˜ ) (π‘§π‘˜ βŠ– β„“)
βˆ‘ πœ‰π‘˜ βŠ™ π‘§π‘˜ βŠ• [β„“ βŠ™ βˆ— βˆ‘ (π‘Žπ‘›π‘˜
..
Proof. The proofs of necessity condition of (i) and (iii) and
the sufficiency of the conditions are routine verification and
hence omitted.
Firstly we prove the sufficiency when 0 < 𝑝 < 1, leaving
the necessities (ii) and (ii)σΈ€  to the next. Now, consider that
the condition (ii) holds. Then the series defining (𝐴𝑧)𝑛 is
absolutely βˆ—-convergent (see Definition 7) for each 𝑛 ∈ N.
By using the known inequality we have
∞ ..
β‰€π‘€× 2
(40)
βˆ—
βŠ™ π‘§π‘˜
βˆ‘ π‘Žπ‘›π‘˜
× π΄π‘] (𝑛) < ∞,
βˆ—
(βˆ—βˆ‘βˆž
π‘˜=0 π‘Žπ‘›π‘˜ , πœ‰)
(𝑛) × 2
.. .. (𝑛0 /π‘ž)𝛽
for every 𝑧 ∈ πœ”βˆ— . Also, the sufficiency for the case 𝑝 β‰₯ 1 can
be obtained in a similar way.
Conversely suppose that (𝐴𝑧)𝑛 exists for each 𝑛 β‰₯ 1
whenever π‘₯ ∈ Ξ©. Thus, the functionals
(b) for 𝑝 β‰₯ 1,
(ii)σΈ€  𝑀 = 𝛽 βˆ‘βˆž
]=0 2
.. .. ]𝛽 ..
Thus,
βˆ—
..
]
∞
..
..
βˆ—
(i) π‘‘βˆ— (π‘Žπ‘›π‘˜
, πœ‰π‘˜ ) = 0 (𝑛 β†’ ∞, π‘˜ fixed),
..
..
]=𝑛0
.. (βˆ’1/𝑝)𝛽
norm of 𝑇𝑛 , that is, ‖𝑇𝑛 β€– = sup𝑛 β€– 𝑇𝑛 π‘₯ β€– π‘Œ × β€– π‘₯ β€– 𝑋
, the
supremum being taken over all non-𝛽-zero elements of 𝑋.
∞
.. ..
βˆ—
βˆ—
β€– ≀ 𝛽 βˆ‘ 𝛽 βˆ‘ β€– π‘Žπ‘›π‘˜
β€–
βˆ‘ β€– π‘Žπ‘›π‘˜
𝛽
βˆ—
βˆ‘ π‘Žπ‘›π‘˜
βˆ—
= βˆ— βˆ‘ πœ‰π‘˜ .
(39)
≀ ‖𝐴 𝑛 β€– for each 𝑛 and implies
σ΅„© σ΅„© ..
≀ 󡄩󡄩󡄩𝐴 𝑛 σ΅„©σ΅„©σ΅„© < ∞.
.. .. (]/𝑝)𝛽 ..
βˆ‘ 𝐴1] (𝑛) × 2
𝛽
]=0
(46)
In fact the series (𝐴𝑧)𝑛 was absolutely βˆ—-convergent which
gives
∞
.. .. (]/𝑝)𝛽
σ΅„©σ΅„© σ΅„©σ΅„© ..
1
.
󡄩󡄩𝐴 𝑛 σ΅„©σ΅„© ≀ 𝛽 βˆ‘ 𝐴 ] (𝑛) × 2
]=0
(47)
Journal of Probability and Statistics
9
𝑝
From (46) and (47), it can easily be seen that
∞
.. .. (]/𝑝)𝛽
σ΅„©σ΅„© σ΅„©σ΅„©
1
.
󡄩󡄩𝐴 𝑛 σ΅„©σ΅„© = 𝛽 βˆ‘ 𝐴 ] (𝑛) × 2
(48)
]=0
This leads us together with Corollary 22 to the fact that
∞
.. (]/𝑝)𝛽 .. 1
..
σ΅„© σ΅„©
sup 󡄩󡄩󡄩𝐴 𝑛 σ΅„©σ΅„©σ΅„© = sup {𝛽 βˆ‘ 2
× π΄ ] (𝑛)} < ∞.
𝑛
𝑛
(49)
]=0
Similarly, one can prove that (ii)σΈ€  is necessary condition. This
completes the proof.
Now, as an immediate consequence of Theorem 23, the
𝑝
following corollary shows the 𝛽-duals for πœ”0 (𝛼, 𝛽), πœ”π‘ (𝛼, 𝛽),
𝑝
and πœ”βˆž (𝛼, 𝛽).
𝑝
Corollary 24. The 𝛽-duals of the spaces πœ”0 (𝛼, 𝛽), πœ”π‘ (𝛼, 𝛽),
(𝛼,𝛽)
𝑝
and πœ”βˆž
(𝛼, 𝛽) are M𝑝 .
Remark 25. The symbol β€œπ›½β€ used for 𝛽-dual has different
meaning from that of 𝛽 generator used in the text.
We may give with quoting the following proposition and
lemma without proofs (see [21, 22]) which are needed in the
proof of next theorem.
Proposition 26. Let 𝑋 be a βˆ—BK-space. Then we have 𝐴 ∈
βˆ—
βˆ—
) if and only 𝐴 𝑛 ∈ 𝑋𝛽 for all 𝑛 ∈ N where 𝐴 𝑛 = (π‘Žπ‘›π‘˜
)
(𝑋 : β„“βˆž
for the sequence in the 𝑛th row of 𝐴 for all π‘˜ ∈ N.
βˆ—
) be an innite matrix. If
Lemma 27. Let 𝐴 = (π‘Žπ‘›π‘˜
..
..
𝛽
‖𝐴 𝑛 β€–M(𝛼,𝛽) < ∞ and limπ‘›β†’βˆž ‖𝐴 𝑛 β€–M(𝛼,𝛽) = 0 , then ‖𝐴 𝑛 β€–M(𝛼,𝛽)
𝑝
𝑝
𝑝
uniformly βˆ—-converges in 𝑛 ∈ N.
𝑝
βˆ—
𝑝
βˆ—
βˆ—
(i) 𝐴 = (π‘Žπ‘›π‘˜
) ∈ (πœ”βˆž
(𝛼, 𝛽) : β„“βˆž
) = (πœ”0 (𝛼, 𝛽) : β„“βˆž
) =
𝑝
βˆ—
(πœ” (𝛼, 𝛽) : β„“βˆž ) if and only if
σ΅„© σ΅„©
sup 󡄩󡄩󡄩𝐴 𝑛 σ΅„©σ΅„©σ΅„©M(𝛼,𝛽) < ∞.
𝑝
..
π‘›βˆˆN
(50)
βˆ—
𝑝
) ∈ (πœ”βˆž
(𝛼, 𝛽) : 𝑐0βˆ— ) if and only if
(ii) 𝐴 = (π‘Žπ‘›π‘˜
..
σ΅„© σ΅„©
lim 󡄩󡄩𝐴 σ΅„©σ΅„© (𝛼,𝛽) = 0 .
π‘›β†’βˆž σ΅„© 𝑛 σ΅„©M𝑝
(51)
𝑝
βˆ—
) ∈ (πœ”0 (𝛼, 𝛽) : 𝑐0βˆ— ) if and only if (50) holds
(iii) 𝐴 = (π‘Žπ‘›π‘˜
and
βˆ—
lim π‘Žβˆ—
π‘›β†’βˆž π‘›π‘˜
= 0βˆ—
(52)
for all π‘˜ ∈ N.
βˆ—
(π‘Žπ‘›π‘˜
)
(iv) 𝐴 =
hold and
𝑝
∈ (πœ” (𝛼, 𝛽) :
βˆ—
𝑐0βˆ— )
if and only if (50), (52)
∞
βˆ—
lim βˆ— βˆ‘ π‘Žπ‘›π‘˜
= 0βˆ— .
π‘›β†’βˆž
π‘˜=1
5. Concluding Remarks
Non-Newtonian calculus is a methodology that allows one to
have a different look at problems which can be investigated
via calculus. It should be clear that the non-Newtonian
calculus is a self-contained system independent of any other
system of calculus. Therefore the reader may be surprised
to learn that there is a uniform relationship between the
corresponding operators of this calculus and the classical
calculus.
In this paper we have introduced the sequence spaces
𝑝
𝑝
(𝛼, 𝛽) as a generalization of the
πœ”0 (𝛼, 𝛽), πœ”π‘ (𝛼, 𝛽), and πœ”βˆž
𝑝
𝑝
𝑝
spaces πœ”0 , πœ” , and πœ”βˆž of Maddox [19]. Our main purpose is
𝑝
to determine the 𝛽-duals of the new spaces πœ”0 (𝛼, 𝛽), πœ”π‘ (𝛼, 𝛽),
𝑝
and πœ”βˆž (𝛼, 𝛽) and is to characterize the classes of matrix
transformations from these spaces to any one of the spaces
βˆ—
, π‘βˆ— , and 𝑐0βˆ— . As a future work we will try to obtain the
β„“βˆž
characterizations of the classes of infinite matrices from the
𝑝
𝑝
(𝛼, 𝛽) to a sequence space
spaces πœ”0 (𝛼, 𝛽), πœ”π‘ (𝛼, 𝛽), and πœ”βˆž
βˆ—
,
πœ† over the non-Newtonian complex field different from β„“βˆž
βˆ—
βˆ—
𝑐 , and 𝑐0 .
Competing Interests
Theorem 28. The following statements hold:
𝛽
βˆ—
) follows
Proof. (i) Condition (50) for 𝐴 ∈ (πœ”0 (𝛼, 𝛽) : β„“βˆž
from Proposition 26 and Corollary 24. Then the other parts
𝑝
𝑝
(𝛼, 𝛽) by
follows from the fact that πœ”0 (𝛼, 𝛽) βŠ‚ πœ”π‘ (𝛼, 𝛽) βŠ‚ πœ”βˆž
Proposition 20.
(ii) This condition is proved in the same way as in
Theorem 23 with πœ‰π‘˜ = 0βˆ— for all π‘˜ ∈ N.
𝑝
(iii) Since πœ”0 (𝛼, 𝛽) is a βˆ—BK-space with βˆ—AK by Propoβˆ— βˆ—
βˆ—
the conditions
sition 20 and 𝑐 , 𝑐0 are closed subset of β„“βˆž
𝑝
βˆ—
follow from the characterization of (πœ”0 (𝛼, 𝛽) : β„“βˆž
).
(iv) The conditions follow from those in (iii).
(53)
The author declares that there are no competing interests.
References
[1] M. Zeltser, M. Mursaleen, and S. A. Mohiuddine, β€œOn almost
conservative matrix methods for double sequence spaces,”
Publicationes Mathematicae, vol. 75, no. 3-4, pp. 387–399, 2009.
[2] U. Kadak and P. Baliarsingh, β€œOn certain Euler difference
sequence spaces of fractional order and related dual properties,”
The Journal of Nonlinear Science and Applications, vol. 8, no. 6,
pp. 997–1004, 2015.
[3] E. Malkowsky, M. Mursaleen, and S. Suantai, β€œThe dual spaces
of sets of difference sequences of order m and matrix transformations,” Acta Mathematica Sinica, vol. 23, no. 3, pp. 521–532,
2007.
[4] E. Malkowsky and M. Mursaleen, β€œMatrix transformations
between FK-Spaces and the sequence spaces m(πœ‘) and n(πœ‘),”
Journal of Mathematical Analysis and Applications, vol. 196, no.
2, pp. 659–665, 1995.
[5] M. Stieglitz and H. Tietz, β€œMatrixtransformationen von Folgenräumen Eine Ergebnisübersicht,” Mathematische Zeitschrift,
vol. 154, no. 1, pp. 1–16, 1977.
10
[6] F. Başar, Summability Theory and Its Applications, Normed
and Paranormed Sequence Spaces, Bentham Science Publishers,
Istanbul, Turkey, 2012.
[7] M. Grossman, Bigeometric Calculus, Archimedes Foundation
Box 240, Rockport, Mass, USA, 1983.
[8] M. Grossman and R. Katz, Non-Newtonian Calculus, Newton
Institute, 1978.
[9] M. Grossman, The First Nonlinear System of Differential and
Integral Calculus, Mathco, Rockport, Mass, USA, 1979.
[10] A. E. Bashirov, E. M. KurpΔ±nar, and A. ÖzyapΔ±cΔ±, β€œMultiplicative
calculus and its applications,” Journal of Mathematical Analysis
and Applications, vol. 337, no. 1, pp. 36–48, 2008.
[11] D. Aniszewska, β€œMultiplicative Runge Kutta methods,” Nonlinear Dynamics, vol. 50, no. 1-2, pp. 265–272, 2007.
[12] E. Misirli and Y. Gurefe, β€œMultiplicative Adams-BashforthMoulton methods,” Numerical Algorithms, vol. 57, no. 4, pp.
425–439, 2011.
[13] A. F. CΜ§akmak and F. BasΜ§ar, β€œSome new results on sequence
spaces with respect to non-Newtonian calculus,” Journal of
Inequalities and Applications, vol. 2012, article 228, 2012.
[14] A. F. CΜ§akmak and F. BasΜ§ar, β€œCertain spaces of functions over
the field of non-Newtonian complex numbers,” Abstract and
Applied Analysis, vol. 2014, Article ID 236124, 12 pages, 2014.
[15] S. Tekin and F. BasΜ§ar, β€œCertain sequence spaces over the nonNewtonian complex field,” Abstract and Applied Analysis, vol.
2013, Article ID 739319, 11 pages, 2013.
[16] U. Kadak, β€œDetermination of the Köthe-Toeplitz duals over the
non-Newtonian complex field,” The Scientific World Journal, vol.
2014, Article ID 438924, 10 pages, 2014.
[17] U. Kadak and H. Efe, β€œThe construction of Hilbert spaces over
the non-Newtonian field,” International Journal of Analysis, vol.
2014, Article ID 746059, 10 pages, 2014.
[18] U. Kadak and M. Özlük, β€œGeneralized Runge-Kutta method
with respect to the non-Newtonian calculus,” Abstract and
Applied Analysis, vol. 2015, Article ID 594685, 10 pages, 2015.
[19] I. J. Maddox, β€œOn Kuttner’s theorem,” Journal of the London
Mathematical Society, vol. 43, pp. 285–290, 1968.
[20] E. Malkowsky and V. Rakocevic, β€œAn introduction into the
theory of sequence spaces and measure of noncompactness,”
Zbornik Radova, vol. 9, no. 17, pp. 143–274, 2000.
[21] A. M. Jarrah and E. Malkowsky, β€œOrdinary, absolute and strong
summability and matrix transformations,” Filomat, no. 17, pp.
59–78, 2003.
[22] F. BasΜ§ar, E. Malkowsky, and B. Altay, β€œMatrix transformations
on the matrix domains of triangles in the spaces of strongly C1summable and bounded sequences,” Publicationes Mathematicae, vol. 73, no. 1-2, pp. 193–213, 2008.
Journal of Probability and Statistics
Advances in
Operations Research
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics
Volume 2014
The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at
http://www.hindawi.com
International Journal of
Advances in
Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com
Mathematical Physics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International
Journal of
Mathematics and
Mathematical
Sciences
Mathematical Problems
in Engineering
Journal of
Mathematics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Discrete Dynamics in
Nature and Society
Journal of
Function Spaces
Hindawi Publishing Corporation
http://www.hindawi.com
Abstract and
Applied Analysis
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014