Lecture 1
Periodicity and Spatial Confinement
Crystal structure
Translational symmetry
Energy bands
k·p theory and effective mass
Heterostructures
J. Planelles
SUMMARY (keywords)
Lattice → Wigner-Seitz unit cell
Periodicity → Translation group → wave-function in Block form
Reciprocal lattice → k-labels within the 1rst Brillouin zone
Schrodinger equation → BCs depending on k; bands E(k); gaps
Gaps → metal, isolators and semiconductors
Heterostructures: EFA k pˆ i
QWell QWire QDot
confinement Vc band offset
Crystal structure
A crystal is a solid material whose constituent atoms,
molecules or ions are arranged in an orderly repeating pattern
+
+
Crystal = lattice + basis
Bravais lattice: the lattice looks the same when seen from any point
a1
a2
P
a1
P
a2
P’ = P + (m,n,p) * (a1,a2,a3)
integers
Unit cell: a region of the space that fills the entire crystal by translation
Primitive: smallest unit cells (1 point)
Unit cell: a region of the space that fills the entire crystal by translation
Primitive: smallest unit cells (1 point)
Wigner-Seitz unit cell: primitive and captures the point symmetry
Centered in one point. It is the region which is closer to that point than to any other.
Body-centered cubic
Translational symmetry
We have a periodic system.
Is there a simple function to approximate its properties?
a
(x)
( x) ( x na) | f ( x) |2 | f ( x na) |2 f ( x na) ei f ( x)
Tn f ( x) f ( x na)
Tn ei a n pˆ
(i a n) q q
pˆ
q!
q
Tn Translation
Group
[Tn , Tm ] 0 Abelian Group
ianpˆ
Tn f ( x) e
q
(ian)q
qd f
f ( x)
(i )
f ( x an)
q
q!
dx
q
Eigenfunctions of the linear momentum (Also Bloch Functions)
are basis of translation group irreps
linear momentum
Tneikx eianpˆ eikx eiank eikx
Bloch functions
Ψ k ( x) ei k x u ( x); u ( x a) u ( x)
Tn Ψ k ( x) Tn eikxu ( x) eianpˆ eikxu ( x) eiankΨ k ( x)
E
Tn
k
1 e
ikna
e
ikx
Range of k and 3D extension
i[k
2
k ~ k' k
m, m Z same character: e
a
k [ , ] ; k 0 labels the fully symmetric A1 irrep
a a
x r
3D extension
k k
2π
m]na
a
k (r ) ei kr u(r ); u(r a) u(r )
i k a i k r
Ta k (r ) ei k ( r a)u (r a ) e
e u (r )
character
eikna
Reciprocal Lattice
2π
1D : k ~ k ' k 'k K
: eiKa 1
a
3D : k ~ k' k' k K : ei K ai 1, ai a, b, c (lattice vectors)
K?
K p1k1 p 2 k2 p3k3 ,
K ai 2π pi
: k 0,
ki 2
k1 , k2 , k3
k xk1 yk 2 zk3 ,
(a j ak )
(a j ak )ai
,
pi Z
reciproca l lattice
x, y, z (-1/2,1/2)
First Brillouin zone: Wigner-Seitz cell of the reciprocal lattice
Solving Schrödinger equation: Von-Karman BCs
Crystals are infinite... How are we supposed to deal with that?
We use periodic boundary conditions
Group of translations:
k is a quantum number due to
Ta k (r ) e i k a k (r )
k ( -a / 2) e i k (a / 2),
translational symmetry
[ , ]
1rst Brillouin zone
We solve the Schrödinger equation for each k value:
The plot En(k) represents an energy band
How does the wave function look like?
[Tˆ , Hˆ ] 0
Hamiltonian eigenfunctions are basis of the Tn group irreps
ik t
We require Tˆ e
ik r
k (r ) e uk (r )
Envelope part
Envelope part
Periodic part
Bloch function
Periodic (unit cell) part
uk (r t ) uk (r )
Energy bands
How do electrons behave in crystals?
quasi-free electrons
Vc (x)
ions
p2
Vc ( x) k ( x) k k ( x)
2m
BC : Ψ k ( x a ) e ika Ψ k ( x)
k Vc (x)
k ( x) N e
ik x
k
Empty lattice
2 p
a
Plane wave
Vc (x)
pˆ k ( x) k k ( x)
2 k 2
k
2m
k
T=0 K
Fermi energy
F
kF
kF
k
2 k 2
k
2m
Band folded into the first Brillouin zone
2 k 2
k
2m
(k): single parabola
BC : Ψ k ( x a ) e ika Ψ k ( x)
k ~ k ' k ' k K
2π
: eiKa 1
a
folded parabola
Bragg difraction
p2
Vc ( x) k ( x) k k ( x)
2m
Bragg diffraction
a k 2 n, n Z
gap
2 / a
0
a
2 / a
4 / a
k
p2
Vc ( x) k ( x) k k ( x)
2m
Types of crystals
k
k
Conduction Band
Fermi
level
k
few eV
fraction eV
gap
Valence
Band
k
k
Metal
Insulator
• Empty orbitals
available at low-energy:
• Low conductivity
high conductivity
k
Semiconductor
• Switches from conducting
to insulating at will
k·p Theory
How do we calculate realistic band diagrams?
2
p
ˆ
H
Vc (r )
2m
e
i k r
Tight-binding
Pseudopotentials
k·p theory
ik r
k (r ) e uk (r )
i
k
r
ˆ
H k (r ) k e
k (r )
2
2 2
p
k
k p
2m Vc (r ) 2m m uk (r ) k uk (r )
The k·p Hamiltonian
MgO
CB
uCBk
HH
uHHk
LH
uLHk
uSOk
Split-off
k=0
k=Γ
{ 0n , u0n }
1. Solving Hkp at point (k=0)
2. Expanding Hkp in this basis
k
n
uk ( r )
n
cnk u0 (r )
n
gap
u0n Hˆ kp u0n '
2
n |k |
k n n'
n,n ' u0 p u0
0
2
m
m
2
Kane
parameter
8-band H
s
s
s
k2
2m
0
s
0
k2
2m
CB
uCBk
1-band H
1-band H
HH
uHHk
LH
uLHk
4-band H
uSOk
Split-off
k=0
k
s
s
3 3
,
2 2
s
k2
2m
0
P k
s
0
k2
2m
0
P k
0
2
P kz
3
1
P k
3
1
P k
3
2
P kz
3
0
P k
8-band H
3 3
,
2 2
3 1
,
2 2
3 1
,
2 2
3 3
,
2 2
1 1
,
2 2
1 1
,
2 2
1
P kz
3
2
P k
3
2
P k
3
1
P kz
3
0
k2
2m
3 1
,
2 2
2
P kz
3
1
P k
3
3 1
,
2 2
1
P k
3
2
P kz
3
3 3
,
2 2
0
0
0
k2
2m
1 1
,
2 2
1
P kz
3
2
P k
3
1 1
,
2 2
2
P k
3
1
P kz
3
0
0
0
0
0
0
0
0
0
0
0
0
P k
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
k2
2m
k2
2m
0
0
k2
2m
0
0
k2
2m
Influence of the romote bands: one-band Hamiltonian for conduction
u0n Hˆ kp u0n '
2
n |k |
k n n'
n,n ' u0 p u0
0
2
m
m
2
2
|
k
|
kcb 0cb
2m
2
This is a crude approximation... Let’s include remote bands perturbationally
kcb
k
CB
2
2
2
|
k
|
0cb
2 | k |2
2m
m
x, y , z
ncb
u0cb
p u0n
2
0cb 0n
1/m*
Free electron
m=1 a.u.
negative mass?
k
InAs
m*=0.025 a.u.
1
1 kcb
2
m * k 2
Effective mass
2 2
k
cb
cb
k 0
2m*
Heterostructures
Brocken translational symmetry
How do we study this?
B
A
B
B
A
B
A
z
z
z
quantum well
quantum wire
quantum dot
Heterostructures
How do we study this?
If A and B have:
B
A
z
B
• the same crystal structure
• similar lattice constants
• no interface defects
...we use the “envelope function approach”
ik r
k (r ) e uk (r )
i k r
k (r ) e
( z ) uk ( r )
Project Hkp onto {Ψnk}, considering that:
Envelope part
Periodic part
f (r ) unk (r ) dr
1
unk (r ) dr f (r ) dr
unitcell
Heterostructures
In a one-band model we finally obtain:
B
A
z
B
2 d 2
2 k 2
V ( z)
2m dz 2
2m
( z) ( z)
B , k 0
V(z)
A, k 0
1D potential well: particle-in-the-box problem
Quantum well
Most prominent applications:
• Laser diodes
• LEDs
• Infrared photodetectors
Image: CNRS France
Image: C. Humphrey, Cambridge
Quantum well
B
A
B
z
Image: U. Muenchen
2 2
2
kx
2
2
( y, z ) ( y, z )
( y z ) V ( y, z )
2m
2m
Most prominent applications:
• Transport
• Photovoltaic devices
Quantum wire
A
z
2 2
V ( x, y, z ) ( x, y, z ) ( x, y, z )
2m
Most prominent applications:
• Single electron transistor • In-vivo imaging • Photovoltaics
• LEDs
• Cancer therapy
• Memory devices
• Qubits?
Quantum dot
© Copyright 2026 Paperzz